
 
 

 
 

Figure 2: (left) Sample Mask. Spatial distribution of citrate before and after MaxEnt. 

Figure 1: Select 2D J-
resolved spectra (top) 25% 
NUS (bottom) MaxEnt 
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Intended Audience: Researchers working in spectroscopic imaging in vivo and image reconstruction. 

Purpose: The Echo-Planar based Correlated Spectroscopic Imaging (EP-COSI) and Echo-Planar J-Resolved Spectroscopic Imaging (EP-JRESI) 
sequences allow for the simultaneous acquisition of two spatial (ky, kx) and two spectral (t2, t1) dimensions in a single recording to form 4D MRSI 
[1]. Their scan times are directly proportional to the number of increments in the ky and t1 dimensions and can take 20 to 40 minutes using typical 
parameters which is too long to be used for a routine clinical protocol. Reducing 4D EP-COSI and EP-JRESI scan times requires the reduction of 
either the ky spatial or t1 spectral dimensions through truncation or lower sampling rates, and a corresponding 
unwanted reduction in resolution or bandwidth with the potential for aliasing. However, non-uniform under-
sampling of the spatial-spectral ky-t1 plane in combination with iterative Maximum Entropy (MaxEnt) 
reconstruction can be used to accelerate the collection of 4D MRSI data in vivo while preserving the spatial 
and spectral resolution [2]. 
Methods: The under-sampled ky-t1 planes of the simulated EP-COSI and in vivo EP-JRESI scans were 
iteratively reconstructed using MaxEnt. The MaxEnt algorithm uses a variant of the conjugate gradient method 
to solve the constrained convex optimization problem [3,4]: 

maximize S1/2(m) s.t. ||F-1Kf - D||2 <=  σ   (1) 

where m is the estimated fully-sampled 4D data set at each iteration, F-1 is the inverse Fourier transform, K is 
the under-sampling mask, D is the time-domain acquired data, σ is the standard deviation of the noise, and 
S1/2(m) is the spin-½ entropy of the estimated spectra. Entropy in the context of MRSI represents a measure of 
the phase coherence of an ensemble of spins within a given voxel volume. High-amplitude NMR signals 
represent states of full phase coherence and low entropy, while low amplitude NMR signals represent states of 
lower phase coherence and high entropy. By maximizing the entropy of the spatial, spectral-domain, under-
sampling artifacts are removed from the reconstruction because they represent states of higher phase coherence 
and lower entropy that are not present in the sampled data.  
A prospective MaxEnt reconstruction was performed on a 4D EP-JRESI scan of a 71 year old human prostate 
with malignant lesions in the left and right base (Gleason score of 3+3, prostatic specific antigen of 8). The 
scan was acquired on a Siemens 3T Trio scanner using the single-channel endorectal coil with the following parameters: 1x1x1 cm3 voxel size, 64 t1 
increments, TR/TE/averages = 1.5s/30ms/1, a 16x16cm2 FOV, and spectral bandwidths of ±500Hz and 1190Hz along F1 and F2, respectively. The ky-
t1 mask shown in Figure 2 was used during the scan to acquire 25% of the ky-t1 plane during the acquisition. Eddy current correction was applied to 
the 4D prostate data after MaxEnt reconstruction. 
Results: Figure 1 shows a select voxel from the 25% under-sampled 4D EPJRESI scan with the NUS data on top and the MaxEnt reconstruction on 
bottom. The citrate (Cit) diagonal and its cross peaks around F2=2.6ppm in the NUS spectrum are not easily resolved. There is significant aliasing of 
the Cit peaks along t1 as well as the fat peaks around F2=1.5ppm. In the MaxEnt reconstruction, the Cit diagonal and cross peaks are fully resolved 
with no aliasing along t1. The fat peaks can be fully resolved around F2=1.5ppm with no aliasing. Figure 2 shows the spatial distributions of the Cit 
peaks highlighted in figure 1 for the NUS data on the left and MaxEnt reconstruction on the right. The MaxEnt reconstruction shows the SNR of the 
Cit peaks in healthy tissue decreasing further from the endorectal coil, as expected. However, the spatial distribution of the under-sampled data set 
shows aliased Cit peaks near the top of the prostate as well as high SNR peaks within the rectum. The spatial distribution of Cit in the under-sampled 
data is noisier and shows significant spectral-spatial artifacts when compared to the MaxEnt reconstruction. 
Discussion: Prior to processing the in vivo data, simulated datasets were used to characterize the algorithm at different SNRs and percent under-
sampling and fully sampled retrospective scans of prostate phantom data were used to verify the spectral characteristics of in vivo metabolites. We 
have shown that it is possible to under-sample the ky-t1 plane of an in vivo MRSI sequence down to 25% and reconstruct the spectra with similar 

spatial distributions and spectral characteristics to what is 
expected of fully sampled data. 
Conclusion: MaxEnt can successfully reconstruct under-sampled 
4D MRSI data by reconstructing a mixed domain spectral-spatial 
plane. Simulated 4D MRSI data provided a quantitative 
characterization of the MaxEnt reconstruction at different percent 
under-sampling and SNR and it was shown that in vivo 4D EP-
JRESI scans could be reconstructed. This acceleration translates 
into a clinically viable 6 minute EP-JRESI prostate scan. 
Additional work optimizing the sample mask and spectral filters 
is in-going as well as comparisons to competing methods of 
iterative reconstruction, such as Compressed Sensing [5,6]. 
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