In Vivo ¹⁷O-MRI at 3 Tesla using a TxRx Surface Coil

Jens Groebner¹, Robert Borowiak^{1,2}, Manuela Rösler³, Reiner Umathum³, Elmar Fischer¹, John M Pavlina¹, and Michael Bock¹

¹Dept. of Radiology / Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany, ²Deutsches Konsortium für translationale Krebsforschung (DKTK), German Cancer Research Center (DKFZ), Heidelberg, BW, Germany, ³Dept. of Medical Physics in Radiology, German Cancer Research Center

(DKFZ), Heidelberg, BW, Germany

Introduction: Oxygen-17 (¹⁷O) MRI is a promising method to assess the metabolic turnover of oxygen *in vivo*. Oxygen consumption is an important parameter for the prognosis of cancer, Alzheimers and Parkinsons disease and normal aging. The low natural abundance (0.037%) and the short relaxation times of the I = 5/2 nucleus ¹⁷O lead to very low MR signals. Direct ¹⁷O-MRI has been carried out so far at 1.5T and at ultra-high fields [1, 2]. In this work a transmit / receive (TxRx) ¹⁷O surface coil for 3 Tesla is presented to enable ¹⁷O MRI studies at clinically available high field strengths.

Materials & Methods: A single-resonant, single-loop surface coil $(\emptyset = 15 \text{ cm})$ was constructed from copper tubing $(\emptyset = 5 \text{ mm})$. The coil was tuned to the Larmor frequency of ¹⁷O at 3 Tesla (f = 16.7 MHz) and matched to 50 Ω . A TxRx-switch was built including a modified preamplifier from a 1.5 T MR system (Magnetom Vision, Siemens Healthcare, Erlangen, Germany) tuned to 16.7 MHz (Fig. 1).

Phantom measurements were performed on a cylindrical resolution phantom ($\emptyset = 18.5$ cm, height = 3 cm) at a 3 Tesla MR System (Magnetom TIM Trio, Siemens). The phantom was filled with an aqueous solution with ¹⁷O in natural abundance. Imaging was performed using an adapted 2D FLASH sequence with the following parameters: TE = 5 ms, TR = 15 ms, TA = 16 min, $\alpha = 20^{\circ}$, 1000 averages, SL: 30 mm, BW: 60 Hz/px, FoV: 320 mm², Matrix: 64×64, Res: 5×5×30 mm³. For comparison ¹H images were acquired with a flexible surface coil and a 2D FLASH sequence: TE = 5 ms, TR = 20 ms, $\alpha = 15^{\circ}$, SL: 15 mm, BW: 80 Hz/px, FoV: 320 mm², Matrix: 512×512, Res: 0.64×0.64×15 mm³.

Initial *in vivo* images were acquired in a healthy male (29y) volunteer with the ¹⁷O coil placed near the visual cortex. The following imaging parameters were used: TE = 4 ms, TR = 15 ms, TA = 5 min, α = 20°, 600 averages, SL: 25 mm, BW: 100 Hz/px, FoV: 400 mm², Matrix: 32×32, Res: 12.5×12.5×25 mm³. High-resolution T1w ¹H imaging was conducted for comparison using the system's 8-channel head coil and an MP-RAGE sequence with the following parameters: TE = 3 ms, TR = 2.3 s, TI = 1.1 s, TA = 7 min, α = 12°, SL: 1 mm, BW: 130 Hz/px, FoV: 244×270 mm², Matrix: 256×232.

Results: Figure 2 shows in vitro results of the ¹⁷O imaging compared to the corresponding ¹H image. The SNR of the ¹⁷O images amounts to 44 (according to NEMA [3]). Note, that the oil-containing vessel (arrow) is invisible in the ¹⁷O images. Figure 3 shows the preliminary *in vivo* ¹⁷O images of the visual cortex compared to a ¹H image of the same position – even though anatomical substructures cannot be resolved, the general shape of the brain is clearly visible (cf. overlay in Fig. 4). The ¹⁷O SNR close to the coil was found to be 50.

Discussion & Conclusion: In this work ¹⁷O MR images were acquired at a clinical 3 Tesla MR system. These preliminary results show that with an SNR of 45 *in vitro* and 50 *in vivo*, direct ¹⁷O MRI at 3 Tesla can be accomplished in clinically acceptable acquisition times (15 min and less). To increase both the ¹⁷O signal and the spatial resolution, sequences with ultra-short echo times (UTE) will be used in the future, and dedicated volumetric TxRx coils will be designed for whole-brain imaging.

References:

[1] D Fiat et al. Neurol Res (2004), 26: 803-8, [2] SH Hoffmann et al. Magn Reson Imaging (2011), 66: 1109-15, [3] NEMA Standards Publication (2001) MS 1-2001

Figure 1: Complete setup of the TxRx switch and surface coil for ¹⁷O imaging at 3 Tesla.

Figure 2: a) ^{17}O image of the resolution phantom. The red ellipse depicts the ROI for SNR calculation b) Corresponding ^{1}H image. The oil-containing vessel (red arrow) is only visible in the ^{1}H image as it contains no oxygen.

Figure 3: ${}^{17}O(a)$ and ${}^{1}H(b)$ image of the volunteer. Red arrows indicate corresponding anatomical regions.

Figure 4: Manual overlay of the ¹⁷O (red) onto the corresponding ¹H image.