A Measurement Setup for combined Chlorine (³⁵Cl) and Sodium (²³Na) MRI of the Human Brain

Armin M. Nagel¹, Titus Lanz², Dominik Berthel², Frank Resmer², Wolfhard Semmler¹, and Reiner Umathum¹

¹Dpt. of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Rapid Biomedical, Rimpar, Germany

Target Audience: Scientists and physicians interested in the field of non-proton MRI

Purpose: ²³Na MRI has been performed for more than 25 years [1] and has evolved into a valuable tool for clinical research, since it provides non-invasive insights into cellular ion homeostasis and cell viability [2]. Recently, the first ³⁵Cl MR images of the rat brain [3] and the healthy human brain and muscle [4] were acquired. Chlorine (Cl⁻) is the most abundant anion in the human body and is also involved in many physiological processes, e.g. volume regulation, transepithelial transport and the regulation of electrical excitability [5]. Therefore, a combined imaging of the Na⁺ and Cl⁻ concentrations is highly desirable. ²³Na MRI in clinical research is often performed after morphological images were acquired and normally requires repositioning of the patient, since the quality of the ¹H channel of double-resonant coils is usually not sufficient for clinical examinations. For combined ³⁵Cl and ²³Na studies it is desirable that the examinations be performed in one coil without additional repositioning of the patient, since this would yield unfeasible examinations times. Therefore, we developed and tested a dual tuned head coil for combined ³⁵Cl/ ²³Na imaging.

Methods: Combined 35 Cl/ 23 Na MRI was conducted on a 7 T whole body MR system (MAGNETOM 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany) using a dual tuned (35 Cl/ 23 Na), quadrature birdcage coil. It is made of a concentric design with a resonator diameter of 29 cm and a length of 27 cm. For evaluating sensitivity, two versions were built: <u>Version 1</u>: with 23 Na traps in the 35 Cl resonator; <u>version 2</u>: without 23 Na traps. Additionally, images with a dual tuned (1 H/ 23 Na) quadrature birdcage coil were acquired to evaluate the quality of the 23 Na channel. All 23 Na and 35 Cl MRI sequences were based upon a density-adapted 3D radial projection reconstruction pulse sequence [6].

On the workbench, the resonators were tuned and matched to the working frequencies of 29.1 MHz (³⁵Cl) and ²³Na (78.6 MHz) with S11s better than -20 dB, while the channel isolation was better than 25 dB. In the MR system, the B₁ efficiencies were measured by determining the transmit power required for a 180° pulse at a given pulse duration (1 ms) on a spherical 2.6 l phantom with 0.9% saline solution. B₁ homogeneity and SNR were investigated on version 1 of the birdcage (with ²³Na traps). Parameters: ³⁵Cl MRI: TE/ TR = 0.5/ 180 ms; $\alpha = 90^{\circ}/45^{\circ}$; 4000 projections; $\Delta x^3 = 8 \text{ mm}^3$; ²³Na MRI: TE/ TR = 0.35/ 300 ms; $\alpha = 90^{\circ}/45^{\circ}$; 4000 projections, $\Delta x^3 = 4 \text{ mm}^3$. SNR was determined according to the National Electrical Manufacturers Association (NEMA) definition [7], using the magnitude signal of noise-only images.

In vivo Imaging: ³⁵Cl MRI: To minimize relaxation weighting and to fulfill SAR restrictions a long repetition time (TR = 82 ms) and a short echo time (TE = 0.5 ms) were used. Additional parameters: readout duration: $T_{RO} = 5$ ms; $\alpha = 90^{\circ}$; pulse duration: $T_p = 800 \,\mu$ s; nominal resolution: $\Delta x^3 = (8 \text{ mm})^3$; Hamming filtering; acquisition time: $T_{aq} = 10 \text{ min.}^{23}$ Na MRI: TE = 0.3 ms; TR = 160 ms $T_{RO} = 5 \text{ ms}$; $\alpha = 90^{\circ}$; $T_p = 800 \,\mu$ s; $\Delta x^3 = (4 \text{ mm})^3$; Hamming filtering; $T_{aq} = 10 \text{ min} 40 \text{ s}$.

Results and Discussion: The measured Q values are shown in Table 1. The results for B_1 efficiency are given in Table 2. The change of Q drop for ${}^{35}Cl$ due to ${}^{23}Na$ traps displays quite nicely the 30% difference in B_1 efficiency (SNR ~ SQRT(1-Q/Q_u)). The change of ${}^{23}Na B_1$ efficiency according to the change in Q drop would be 15%. The observed B_1 difference is larger (36%), since, in addition to the change in Q, the ${}^{23}Na B_1$ pattern is changed when the ${}^{35}Cl$ birdcage is not blocked at the ${}^{23}Na$ frequency (anti-phase of B_1 at the higher frequency). The ${}^{35}Cl/{}^{23}Na$ coil exhibits good B_1 homogeneity (c.f. Fig 1, measured on a spherical phantom) in both channels. Phantom imaging revealed SNR values of 63 ± 3 (${}^{35}Cl MRI$), 101 ± 3 (${}^{23}Na MRI$:

 Table 1: Measured Q values of the different setups.

 Version 1 contains ²³Na traps in the ³⁵Cl resonator. Version 2 contains no traps.

2 Contains no traps.			
Q_u/Q_l	³⁵ Cl	²³ Na	
³⁵ Cl/ ²³ Na (1)	190/109	300/50	
³⁵ Cl/ ²³ Na (2)	400/110	400/160	
1 H/ 23 Na		450/50	

Table 2: Reference voltages.

Tuble 2. Reference voltages.		
coil	³⁵ Cl channel	²³ Na channel
³⁵ Cl/ ²³ Na (1)	397 V	381 V
³⁵ Cl/ ²³ Na (2)	293 V	517 V
¹ H/ ²³ Na		326 V

Fig. 1: Transversal B₁ maps of the ³⁵Cl/²³Na coil (version 1) (a, b). a) ³⁵Cl channel. b) ²³Na channel. c) Transversal B₁ map of the ¹H/²³Na coil. All setups showed good B₁ homogeniety. Average flipangles in the presented transversal slices: a) $93^{\circ} \pm 3^{\circ}$; b) $93^{\circ} \pm 3^{\circ}$; b) $93^{\circ} \pm 2^{\circ}$.

Fig. 2: Transversal slices of 3D ³⁵Cl and ²³Na MRI data sets of the healthy human brain. ³⁵Cl MRI could be performed in 10 min with a nominal resolution of (8 mm)³. Both coils yielded comparable results for ²³Na MRI.

 35 Cl/ 23 Na coil) and 95 ± 3 (25 Na MRI: ¹H/ 23 Na coil). Correction for different voxel volumes yielded a 12.7-smaller SNR for 35 Cl MRI compared to the 23 Na imaging (sequence parameters were chosen so that relaxation effects can be neglected). The measured SNR ratio lies well within the theoretically expected range (9.6 – 15.8). If a linear frequency dependence of image noise (i.e. sample dominated loss) is assumed, the SNR of 35 Cl MRI is expected to be 9.6-fold smaller [3]. A model hypothesizing a domination of electronic losses (e.g. due to the skin effect) leads to an increase in noise with the square root of the frequency [8], which would yield a 15.8-fold difference in SNR performance. In vivo 35 Cl and 23 Na MRI of the human head could be performed with good image quality (c.f. Fig 2). The reference voltage for 35 Cl MRI was 370 V. The reference voltages for 23 Na KRI were comparable for both coils (35 Cl/ 23 Na coil: 303 V; ¹H/ 23 Na coil: 290 V). SNR values (brain white matter) of 15 (35 Cl MRI), 30 (23 Na MRI: 35 Cl/ 23 Na coil) and 26 (23 Na MRI: ¹H/ 23 Na coil) were measured.

Conclusion: By including ²³Na traps into the ³⁵Cl resonator, the B₁ efficiency of ³⁵Cl versus ²³Na can be controlled. Intermediate steps will be possible by e.g. changing the impedance of the traps. Furthermore, the B₁ optimization can be predicted by simple Q measurements on the workbench. In vivo ³⁵Cl and ²³Na MRI of the human head could be performed with good image quality (c.f. Fig 2). Both channels show good B₁ efficiency and SNR performance. This setup allows for combined ³⁵Cl/²³Na MRI without repositioning of the patient.

References

1. Hilal et al. J Comput Assist Tomogr (1985) 9: p.1; 2. Boada et al. Curr Top Dev Biol (2005) 70: p. 77; 3. Kirsch et al. NMR in Biomed (2010) 23: p. 592; 4. Nagel et al. In Proc. ISMRM (2012), p. 1699; 5. Jentsch. Physiol. Rev. (2002) 82: p. 503; 6. Nagel AM, et al. Magn Reson Med (2009) 62: p. 1565; 7. National Electrical Manufacturers Association 2001. 8. Hoult and Lauterbur. Journal of Magn Reson (1969) 1979; 34(2):425-433.