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Introduction: The gold standard of histopathological characterisation of brain tumours is from a biopsy, an invasive surgical method with associated 
risks1. 1H magnetic resonance spectroscopy imaging (MRSI) provides in vivo metabolic information with clinical potential to supplement standard MRI for 
non-invasive diagnosis of brain tumours. Manual interpretation and analysis of large multivoxel MRSI data sets is difficult and time-consuming. 
Therefore, pattern recognition (PR) techniques are used to assist MRSI based tumour identification and characterisation2,3, and they can be applied to 
patient MRSI data with suspected gliomas with an aim to segment regions relating to tumour core, tumour infiltration and normal brain. Dimensionality 
reduction (DR) is an important prerequisite for PR to reveal compact and informative representations of the observed data. PCA and ICA are well-known 
DR techniques used in PR of 1H MRS data4, but the data must have certain characteristics to be best analysed by these methods, e.g., PCA implicitly 
assumes Gaussian sources while ICA has linear independent assumption5. In contrast, nonlinear DR techniques do not rely on the linearity assumption 
for segmentation; therefore, high-dimensional data embedded in more complicated manifolds can be identified where linear methods often fail. In this 
work, we advocate the spectral manifold learning method of Laplacian eigenmaps (LE)6 as a DR technique suitable for MRSI data sets, with correlation 
to standard MRI to aid confirmation of our results. Compared to the previous PCA and ICA approach, the LE method gives promising results with respect 
to separation of brain and tumour tissue. 
 

Materials and Methods: Data was acquired from 29 
glioma patients who had given written informed consent in 
accordance with local ethics procedures, and tumour 
diagnosis was confirmed from histology. MR data were 
acquired at 1.5T using 2D MRSI (TR/TE=2000/30ms with 
outer volume suppression) of a 15mm thick axial slice 
through the centre of the observable mass. MRSI data 
were pre-processed by zero-filling prior to Fourier 
transform in 2D to produce a 32x32 matrix of voxels with 
in-plane spatial resolution of 7mm. Spectra were limited to 
4ppm to 0.2ppm (M=498 data points) aligned to Cho at 3.21ppm, and the phased real part of the spectra used for PR analysis of N=1965 voxels in total. 
We developed an in-house program to analyse the MR spectra using the LE method. The aim of the LE method is to compute a low-dimensional 

representation of the data that preserves the local neighbourhood information. In so doing, a solution 
is obtained that reflects the geometric structure of the manifold. We constructed a weighted adjacency 
graph G with N nodes, in which each node represents a particular spectrum. To achieve this k-nearest 
neighbours method was applied to determine connectivity between the nodes according to the 
Euclidean distance in ℜ୒. The smoothness assumption of the manifold justifies the use of Euclidean 
distance, so that the manifold geodesics are locally approximated by Euclidean distances in the space 
where the manifold is embedded. Then a heat kernel was used to define the weights of connected 
edges, ௜ܹ௝ = exp (−|หݏ௜ − ௝  are connected; otherwise, ௜ܹ௝ݏ ௜ andݏ ଶ) ifߪ/|௝หݏ = 0. Next the Laplacian 
matrix ܮ = ܦ − ܹ, was constructed in which ܹ is the adjacency matrix and the corresponding degree 
matrix is ܦ௜௜ = ∑ ௜ܹ௝௝ . Based on standard spectral graph theory, a reasonable mapping is given by a 
matrix ܻ ∈ ℜ୑୶୒, that is ܻ = ,ଵݕ) ,ଶݕ … -௡), which maps the weighted adjacent graph G to a lowݕ
dimensional space, where the connected nodes remain close together and is given by arg min୷ ∑ ||y௜ − y௝||ଶ ௜ܹ௝௜௝ ≡ arg min୷ tr(்ܻܻܮ), which is equivalent to solving the generalised 
eigenvalue problem ܮy = -y. Three corresponding eigenvalues from LE DR were assigned to an 8ܦߣ
bit colour channel respectively allowing 24-bit RGB MRSI colour maps to be overlaid on standard MRI 
images to visualise normal tissue (Green), tumour infiltration (Blue) and tumour core (Red). 
 

Results: Fig.1 shows the results of data reduction represented as spectra, i.e., eigenvectors, for the 
three methods: (a) PCA alone, (b) PCA followed by ICA, and (c) nonlinear LE. Comparison of ICA and 
nonlinear LE analysis, suggests that the three DR components represent normal brain (IC 1 and 
Reduced Data Dimension 1, i.e., LE-DR1), infiltrative glioma (IC 2 and LE-DR2), and high-grade 

necrotic glioma (IC 3 and LE-DR3). However, PCs have a large out-of-phase metabolite signals so do not represent definitive tissue classes. The 
eigenvalues from the ICA and LE were used as an index to classify individual voxels as one of the three different tissue classes: (a) normal brain, (b) 
infiltrative tumour and (c) high-grade/necrotic tissue (Fig.2 shows the median spectrum for each of the three classes (solid red curves) with 25% and 
75% quartiles above and below the median (dashed green curves) respectively. The median spectrum for tissue class (a) were similar across methods 
(IC 1 and LE-DR1) and can be considered as representing a segmentation of normal brain. Similarly, the median spectrum for tissue class (b) across 
methods showed higher Cho to Cr ratio than normal but with reduced NAA. This is suggestive of voxels with a mixture of both tumour and normal tissue 
and can be considered a segmentation of tumour infiltration. Furthermore, both techniques provide spectra representative of high-grade glioma in the 
median spectrum for tissue class (c). Scatter plots of the three tissue segmentation classes using PCA followed by ICA and nonlinear LE (Fig.3) 
suggests that the proposed nonlinear LE method may provide a more defined segmentation of normal brain and tumour infiltration. These findings are 
supported using RGB colour mapping overlaid on conventional MRI. RGB colours are mapped according to the three segmentations of the MRSI data 
sets (Fig.4). Three of the 30 cases are presented. The results found by using PCA followed by ICA generated more regions with both normal brain and 
tumour infiltration classes (cyan voxels); however, the LE method provided a more discrete segmentation (either blue or green voxels) as also indicated 
by the scatter plots (Fig.3). 
 

Conclusions: We have developed a new metric to characterise brain tissue of glioma patients into normal, tumour infiltration, and tumour core 
segmentations. We advocated a nonlinear LE analysis for our MRSI data sets that is rationalised by the fact that the source components before DR have 
a nonlinear component due to the acquisition method and tissue structure. We have demonstrated that our proposed application using nonlinear LE 
method offers robust DR results in one step. This is in contrast to previous studies, which used a two-step process where ICA relied on pre-processing 
using PCA. Brain tissue segmentations with scatter plots and colour map overlays support the results of using nonlinear LE. 
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