Chemical Shift of ¹²⁹Xe is dependent on Red Blood Cell Oxygenation General Leung¹, Graham Norquay¹, Jan Wolber², and Jim M Wild¹

¹Department of Cardiovascular Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom, ²GE Healthcare, Chalfont St Giles, Buckinghamshire, United Kingdom

Target Audience Hyperpolarized Xenon community

Purpose Evaluate the chemical shift relationship between hyperpolarized ¹²⁹Xe and Red blood cell oxygenation (sO₂) **Introduction** Owing to its large highly polarizable electron cloud, ¹²⁹Xe is sensitive to its chemical environment and undergoes changes in its resonance frequency when dissolved in various biological tissues. Using this dissolved ¹²⁹Xe resonance, physiologically important parameters such as gas exchange and uptake can be evaluated. Furthermore, the ¹²⁹Xe resonance in RBCs has been shown to be sensitive to blood oxygen saturation (sO_2), possibly due to the conformational change of hemoglobin as it binds and releases oxygen¹. Using exogenous agents as a probe for *in-vivo* oximetry is appealing as endogenous contrast suffers from physiological variations that confound measurements of oxygenation. However, for 129 Xe to be a useful probe of blood oxygenation, a robust, quantitative relationship between the oxygen saturation and the chemical shift must be established.

Methods NMR spectroscopy was performed after mixing freshly extracted blood and hyperpolarized (HP) ¹²⁹Xe. An exchange module (Contactor 680, Membrana, USA) was used to increase surface area for gas exchange² and positioned near the coil to minimize T_1 relaxation. 15mL of hyperpolarized ¹²⁹Xe, prepared in a home built spin exchange optical pumping system, was infused by hand into the membrane at a rate of approximately 0.5 mL per second. 3 mL of blood was passed through the membrane twice at a flow rate of approximately 1 mL / second. Data were acquired on both a 1.5 T (GE, USA software 14M4) and 3 T (Philips, Netherlands, Achieva) MRI. 512 points were acquired with a 2.5 kHz receiver bandwidth and a calibrated 90 degree excitation pulse. Blood was extracted from the imaging volume after each spectral measurement and analyzed in a blood gas analyzer (ABL80 FLEX, Radiometer UK) within minutes of NMR acquisition. Blood oxygenation was increased progressively by adding pure O₂ to increase oxygenation and sodium dithionite to deoxygenate the RBC. Data were imported into MATLAB (R2011b) and spectra were fit to the spectral model using

$$S(t) = a \cdot e^{-i(\omega_a t + \phi_a) - t_{T_2^*a}} + b \cdot e^{-i(\omega_b t + \phi_b) - t_{T_2^*b}}$$

Results Figure 1 shows a change in the resonance frequency of ¹²⁹Xe dissolved in RBCs with increasing oxygenation. The resonance frequency shifts from approximately 21 ppm in a deoxygenated state to approximately 24 ppm when fully oxygenated. The resonance frequency of the ¹²⁹Xe dissolved in the plasma compartment (0 ppm) does not vary significantly as a function of blood oxygenation. The extracted peak positions are plot as a function of sO_2 in Fig 2. The chemical shift of ¹²⁹Xe in RBCs appears to be linearly dependent on the measured sO₂. Linear regression on the data collected at 1.5T produces a relationship of $\Delta \omega = 0.0338 sO_2 - 20.58$ with a calculated Pearson's correlation coefficient of $R^2 = 0.87$. Similarly, data at 3T show a relationship of $\Delta\omega = 0.0318sO_2$ -20.46 with a calculated Pearson's correlation coefficient of $R^2 = 0.97$. Student's t-test shows no significant difference between the value of the (p>0.3) suggesting the effect is field strength independent.

Discussion/ Conclusion This finding differs from prior work using ¹²⁹Xe¹ that reported the same range of chemical shift, however a nonlinear relationship between the ¹²⁹Xe chemical shift and sO₂. It was hypothesized that this effect was due to the co-operative binding mechanism of hemoglobin³; conformational changes of the hemoglobin molecule with oxygenation would alter the accessibility of ¹²⁹Xe docking sites. Work on the magnetic properties of hemoglobin⁴ suggest that the magnetic susceptibility of a bulk solution of hemoglobin changes linearly as a function of sO₂ despite the conformational changes in the protein caused by co-operative binding. This is due in part to the observation that the hemoglobin is predominantly in either extreme of oxygenation (0 or 4 bound O_2 molecules). The co-operative binding mechanism in this case would be unobservable macroscopically and instead the source of chemical shift would be sampled as an ensemble average. This hypothesis is corroborated by experiments in proton NMR⁵ where a linear dependence between the proton resonance frequency and sO₂ was also found. These observations taken in conjunction suggest that the mechanism of this ¹²⁹Xe chemical shift is dominated by this fast exchange mechanism between the oxy and deoxygenated states of hemoglobin and exhibits a linear dependence with paramagnetic deoxyhemoglobin concentration.

Figure 1 (left) are spectra from ¹²⁹Xe dissolved into freshly extracted human blood. Two distinct peaks are seen, centered at 0 ppm is a peak associated with ¹²⁹Xe dissolved in plasma, and peaks at higher frequency are ¹²⁹Xe dissolved in red blood cells (RBCs). With increasing oxygenation, a chemical shift to higher frequency, denoted by $\Delta \omega$, is detected in the peak associated with ¹²⁹Xe RBC peak. Figure 2 (right) Chemical shift is plotted as a function of measured blood oxygenation. Data are plotted from acquisitions at two field strengths, 1.5 T (denoted by o's), and 3 T (denoted in +'s). The line of best fit has a regression equation and Pearson's Correlation Coefficient of $R^2 = 0.87$

References 1. Wolber Magnetic Resonance in Medicine. 2000;43(4):491–496. 2. Cleveland PLoS ONE. 2010;5(8):e12192.3. Perutz Nature. 1970;228(5273):726– 739.4. Coryell CD, Journal of Physical Chemistry. 1939;43(7):825-839.5. Zhernovoi Biomedical Engineering. 2000;34(1):1-4.