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Figure 1. The reaction structure assumed for this simulation. 
The hyperpolarised molecule P is injected with input function 
Pin. When the reaction of interest is the conversion of P to Mi 
only red terms need to be considered for the AUC ratio 
analysis method. Kinetic modelling requires fitting of all 
terms depicted here. ri is the hyperpolarised relaxation rate, kpi 
and  kip are the forward and reverse apparent rate constants for 
conversion between P and Mi.  P may also react with other 
metabolites (e.g. Mf, Mg, Mh above) but we assume these do 
not react with Mi. 

Figure 2. Errors in the change metric (X) as a function of 
change in kpi. The different coloured plots correspond to 
different changes in kip, where greater changes in kip results 
in a larger error in X. The plot was generated using q = 0.1 
and shows that errors in X are independent of changes in kpi. 
The data were generated using the assumption that ri is 
constant pre/post treatment.  The dots show the mean of the 
Monte Carlo estimates and the lines show the prediction of 
eq. 4. 

Figure 3. Errors in the change metric (X) as a function of 
change in kip for a range of q values and assuming no change 
in kpi. Errors in X increase with greater change in kip.  Dots 
show the Monte Carlo estimates and the lines show the
prediction. The black dotted line represents 10% error in kip

and q=0.35, which are taken from published in vivo data from 
[2], in this case the fractional bias in X incurred from using 
the AUC ratio method is <10%. 
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Introduction: MR Signal enhancements from Dynamic Nuclear Polarisation (DNP) allow detection of apparent enzymatic rates in vivo in real-time. Apparent reaction 
rate constants have been derived by kinetic modelling of the dynamic curves using the modified Bloch equations, which allows quantification of the data. An alternative, 
simpler method to quantify change is to calculate the ratio of the total areas under the curves (AUC) for a generated metabolite (e.g. lactate) and injected metabolite (e.g. 
pyruvate) and to compare the area ratios before and after treatment. The forward rate constant (kpi) derived from kinetic modelling was previously shown to demonstrate 
a strong linear correlation with AUC ratios in experimental data, both in vitro and in vivo [1]. The objective of this study is to investigate the robustness of the AUC ratio 
method in detecting treatment induced changes in kpi under a range of simulated experimental conditions. 
 

Methods: Assuming the reaction model shown in Fig. 1, the kinetics can be described by the differential equations 1a and 
1b, for the injected molecule, P and its conversion to the ith metabolite, Mi with forward reaction rate kpi and reverse kip. 
Hyperpolarised signals decay with relaxation rate r. Eq. 1a can be manipulated (independently of eq. 1b) using Laplace 
Transforms to give eq. 2, which demonstrates that the ratio of metabolite/pyruvate AUC is proportional to kpi. Importantly, 
this AUC ratio is independent of both the pyruvate input curve (Pin) and the rate constants associated with any other 
metabolites (included in the term Ω in eq. 1b).  This is because we assume that Mi is in exchange with the injected metabolite, 
but not with any other metabolites. An analogous AUC ratio could be derived from eq. 1b, but since this depends on Pin and 
Ω, this ratio does not have such a simple or useful form.  The AUC ratio approach in eq. 2 is useful because changes in the 
AUC ratio are, in practice, dominated by changes in kpi (provided ri > kip), which is usually the parameter of interest. In order 
to investigate the robustness of the AUC ratio method to detecting treatment changes in kpi we define a ‘change metric’ X 
given in eq. 3, where the superscripts refer to pre and post treatment variables.  In eq. 3 the numerator is the AUC ratio of the 
post treatment data, and the denominator is the AUC ratio of the pre-treatment data. If ri and kip are the same before and after 
treatment, then the area ratio is X0 = kpi 

post/kpi
 pre. We assume that ri does not change with treatment – this assumption is likely 

to be reasonable in practice, but the same is not true for the reverse apparent rate constant, kip. Therefore the purpose of this 
abstract is to evaluate the bias in X when kip does change with treatment. Eq. 4 relates the fractional bias in X to two 
dimensionless terms, Δkip and q. Δkip is the fractional change in the reverse rate constant, and smaller values will give lower bias in X. The term q depends on the 
particular values of ri and kip

pre for the measured system, and results in lower bias when q is small, i.e. ri > kip
pre. Data were simulated using Matlab (Mathworks) 

according to the modified Bloch equations [2] for the lactate-pyruvate system and physiologically relevant parameter values were chosen for the various rate constants.  
Simulated Gaussian random noise was added to the data with SNR of 40:1 (max. pyruvate signal: noise std) and 10,000 Monte Carlo repetitions used. 
 

Results & Discussion: Fig. 1 shows the reaction structure for the simulations. This structure is particularly relevant for in vivo experiments, where multiple metabolites 
are formed. For example, an injection of [1-13C]pyruvate, will readily generate lactate, alanine and bicarbonate, which is in exchange with CO2 [3]. Kinetic modelling of 
this system is complex, and we show that the AUC ratio method requires knowledge of only a small portion of this network (coloured red in Fig. 1) to quantify change 
from individual metabolites. Fig. 2 shows that errors in the change metric (X) are independent of change in kpi, as predicted by eq. 4, and are worse with greater changes 
in kip. Fig. 3 shows the error in X as a function of change in kip, for different values of q. These data show that the AUC ratio method is most accurate at correctly 
measuring change between post and pre treatment scans for small values of q, (i.e. when ri is large with respect to kip

pre), and for small changes in kip. Literature values 
from [2,4] result in q = 0.35 and 0.30 respectively, and from [2] kip was shown to change by 10% after treatment with etoposide, therefore from Fig. 3 we can see that 
using the AUC ratio method in this scenario would lead to less than 10% error in X.  The AUC ratio in eq. 2 can be equivalently computed by summing the time-series of 
DNP 13C spectra before taking the ratio of peak integrals of the summed metabolites. This approach has advantages when detecting and localising low-signal metabolites 
and would be appropriate when full kinetic modelling of the data is not required. 
 

Conclusions: We have shown how treatment changes in the AUC ratio relate to treatment-induced changes in kpi and the other rate constants. We have quantified the 
bias incurred in using this technique and identified various limitations, which will be a useful aid in deciding whether full kinetic modelling or the proposed AUC ratio 
method is most suitable. Furthermore, we have shown mathematically that, unlike the kinetic modelling approach, the AUC method is independent of hyperpolarised 
metabolite input function, and also independent of any other reaction pathways of the injected metabolite. This is particularly advantageous for studies where it is 
difficult to determine the input function and where it is not known a priori how many metabolites may be generated, for example when testing new hyperpolarised target 
molecules or novel drug treatments. We have also described how the approach may be further simplified by summing the spectra before finding the peak integrals.  
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