A single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development.

Eszter Boros¹, Miloslav Polasek¹, Żhaoda Zhang¹, and Peter Caravan¹ ¹Department of Radiology, Massachusetts General Hospital, Harvard Medical School, The Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States

Target audience: Gd-based T1 agent development for high fields, basic science studies, chemistry.

Purpose: Magnetic resonance imaging (MRI) at high magnetic fields benefits from an increased signal to noise ratio, however T_1 based MR contrast agents show decreasing relaxivity (r_1) at higher fields. It was our aim to design new Gd-based contrast agents that allow us to control the rotational dynamics (τ_R) of the molecule while maintaining a rapid mean water residency time ($_M$). Control over these parameters should allow the synthesis of high field, high relaxivity contrast agents.¹

Methods: We investigated applications of the alanine analogue of Gd(DOTA), Gd(DOTAla). Fmoc protected DOTAla suitable for solid phase peptide synthesis was synthesized and integrated into polypeptide structures containing 1-3 Gd(DOTAla) complexes (GdL1, Gd₂L2, Gd₃L3). Water exchange kinetics for the inner-sphere water ligand were determined by measurement of the temperature dependence of the transverse relaxation time T₂ of H₂¹⁷O in the presence and absence of GdL1. Relaxivities were determined through measurement of T₁ using inversion recovery at different field strengths ranging from 0.47 T to 11.7T. To address kinetic inertness, we measured the full transchelation of Gd(III) from the complexes GdL1, Gd₂L2 Gd₃L3 to a DTPA derivative with higher thermodynamic stability at pH 3 and 37 °C.

Results: The mean water residency time at 37 °C was found to be optimal ($\tau_M = 17 \pm 2$ ns) for relaxivity. The facile integration of the DOTAla into polypeptide structures allowed investigation of a variety of multimeric structures. Relaxivity was determined for 6 new compounds along with FDA-approved agents gadofosveset and gadoteridol at 5 magnetic fields (0.47 – 11.7T). The trimers performed best at all fields: $r_1 = 12.9 \text{ mM}^{-1} \text{ s}^{-1}$ per Gd for Gd₃L3 at 1.4T, 37 °C. T_1 measurements indicated that Gd₃L3 shows greater relaxivity at low, intermediate and high fields than the clinically used small molecule contrast agent gadoteridol while also outperforming gadofosveset/HSA at intermediate and high fields (Figure 1).

Discussion and Conclusion: Gd_3L3 is superior to commercial contrast agents gadoteridol and gadofosveset /HSA (human serum albumin) at high fields. The modularity of design, the ease of solid phase synthesis, high kinetic inertness ($t_{1/2} = 61\pm4h$) for Gd_3L3), and optimal water exchange rate renders the Gd(DOTAla) scaffold a suitable platform for the development of high field T_1 agents based on Gd.

References: (1) Caravan, P. et al, (2009) Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. *Contrast Media Mol. Imaging*, **4**, 89–100.

Figure. Relaxivities of $Gd_3L3(\bullet)$, gadofosveset with excess HSA (\bigtriangledown) and gadoteridol (\blacklozenge) as a function of magnetic field at 37 °C. (A) Relaxivity plotted per [molecule] showing that Gd_3L3 with its intermediate correlation time is a much more potent relaxation agent that slow (gadofosveset/HSA) or fast (gadoteridol) tumbling compounds at 1.41T and higher frequencies. (B) Relaxivity plotted per [Gd] shows that the intermediate correlation time of Gd_3L3 results in higher relaxivities at high fields.