Gadolinium oxide nanoparticles for positive contrast MRI of human aortic endothelial cells at 7 Tesla

Yasir Loai¹, Nurus Sakib¹, Rafal Janik², Warren D Foltz³, and Hai-Ling Margaret Cheng^{1,4} ¹The Hospital for Sick Children, Toronto, Ontario, Canada, ²Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada, ³University Health Network, Toronto, Ontario, Canada, ⁴Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

TARGET AUDIENCE: cellular/molecular imager, contrast agent/drug developer

PURPOSE: Positive-contrast MRI provides improved delineation and specificity over conventional methods based on negative-contrast iron oxides. A major limitation to advancing positive-contrast MRI is the low signal enhancement provided by agents used for labeling. The gadolinium (Gd) ion is a candidate positive-contrast agent but performs poorly in its chelated form due to low cell uptake. Recently, gadolinium oxides (Gd₂O₃) have been introduced ^{1,2}. These small nanoparticles are ingested efficiently by cells and contain a high fraction of superficial Gd for considerably higher relaxivity ^{3,4}. However, their ability to generate positive contrast has not been demonstrated at high field strengths, where relaxivity is known to decline. In this study, we investigate the potential of Gd₂O₃ for positive-contrast MRI at 7 Tesla.

<u>METHODS</u>: Normal human aortic endothelial cells (Lifeline Cell Technology, Walkersville, MD) were cultured and labeled by incubating in a mixture of Gado CELLTrack (-) (BioPAL, Worcester, MA), a Gd_2O_3 nanoparticle, and poly-L-lysine at a 5:2 ratio for 24 hours. The following Gd_2O_3 concentrations were prepared: 0 (control), 0.002, 0.02, 0.1, 0.2, and 1.0 mM of Gd ion.

MRI was performed at 7 Tesla (BioSpec 70/30, Bruker, Ettlinger, Germany) using a 4-channel phased-array receive coil. About 250,000 cells were used to create cell pellets. T1 was measured using 2D saturation recovery RARE: RARE factor=2, 10 TRs from 125 to 5000 ms, TE=7.43 ms, FOV=2.56 cm, 4 mm slices, 100x100 μ m in-plane. T2 was measured using CPMG: TR=4000 ms, 128 TEs from 4.19 to 536.5 ms, 5 mm slices, 200x200 μ m in-plane, NEX=2. T1 and T2 were also measured for Gd₂O₃ in water. Data was analysed in-house (Matlab, v.7.8, Natick, MA).

Gd content in cells was determined using ICP-AES on a PerkinElmer spectrometer. Detection limit was 0.01 μ g/mL. Cell viability and proliferation were measured (Promega, Madison, WI) on fluorescence (560/590 nm for viability, 490 nm for proliferation).

RESULTS: Relaxivity constants of Gd_2O_3 in water were $r_1=4.7 \text{ mM}^{-1}\text{s}^{-1}$ and $r_2=29.3 \text{ mM}^{-1}\text{s}^{-1}$. Cells showed progressive signal enhancement with increasing [Gd] until competing T2 effects began to offset T1 signal increase at 0.1 mM (Fig 1). Fig 2 shows both T1 and T2 decrease. Positive contrast was maintained over 7 days post-cell labeling, as relaxation times remained relatively stable (data not shown). Viability and proliferation were unaffected up to day 7, when both were reduced, *P < 0.05 (Fig 3). Table 1 shows linear and high Gd uptake with no saturation effect.

<u>DISCUSSION</u>: Gd_2O_3 provides positive contrast at 7 Tesla, is efficiently and spontaneously ingested by cells, and provides stable labeling for at least 7 days.

<u>CONCLUSION</u>: Gd_2O_3 nanoparticles are a promising contrast agent for positivecontrast cell-tracking and molecular MRI applications at high-field strengths. **<u>REFERENCES</u>**: 1. Engstrom M et al. MAGMA 2006; 19:180-6. 2. Klasson A et al. Contrast Media Mol Imaging 2008; 3:106-11. 3. Ahren M et al. Langmuir 2010; 26:5753-62. 4. Faucher L et al. Contrast Media Mol Imaging 2011; 6:209-18.

Table 1. Cell uptake of Gd₂O₃ measured on ICP-AES

Incubation medium [Gd] (mM)	Mass of Gd (pg/cell)
0	0
0.002	0.71
0.02	7.26
0.1	34.1
0.2	84.9
1.0	289