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Target Audience  Clinicians and physicists investigating prostate cancer and MRI for radiotherapy planning 
Purpose  Improvements in radiotherapy techniques allow contouring of doses to a target of interest and delivery of a radiation boost 
to the dominant intraprostatic nodule (DIL) in the prostate potentially would improve treatment efficacy. The purpose of this study 
was to investigate the ability of different functional MR parameters to correctly classify tissue types in the prostate defined on 
whole-mount histology and determine the optimal combination of multiple parameters required to identify tumour. 
Methods  In 24 patients, diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE-MRI), T2-maps and 3D proton 
MR spectroscopic imaging (MRSI) were acquired. Tissue types (normal peripheral zone (PZ), normal central gland (CG) and tumour 
(TU)) defined on histological specimens after prostatectomy were mapped onto the matched parametric maps. All functional 
parametric maps were resampled to the MRSI resolution (6x6x6mm) and the apparent diffusion coefficient (ADC), T2, 
choline+creatine/citrate (Cho+Cr/Cit) ratio, and the vascular parameters Ktrans, Kep, Ve, and initial area under the gadolinium curve 
(IAUGC) were determined for each tissue class. Differences in the populations in tissue classes were tested using ANOVA and 
Bonferroni corrected post-hoc tests. Receiver operator curves (ROCs) were generated for each parameter to determine the ability of 
each parameter to discriminate between non-malignant and malignant tissue. Multiple functional MR parameters were combined 
using linear discriminant analysis and ROCs generated for the optimal discriminant functions. The ability of the model to predict 
tissue type at a voxel resolution was investigated by applying the discriminant function cut-off at the 90% specificity point in the 
same cohort of patients. The sensitivity and specificity of the model at predicting the tissue class of each voxel compared with 
histopathological findings was calculated for each patient and the mean value found. 
Results  ADC, Cho+Cr/Cit, Ktrans, Kep, and IAUGC for the TU 
tissue class was significantly different to those for PZ and 
CG (all p<0.001). Ve and T2 for TU were significantly 
different to PZ (p<0.001), but not CG (p=1). Fig 1 shows 
the ROCs for discriminating TU from PZ (left) and CG 
(right). The optimal combined model for TU vs. PZ did 
not include T2 or Ve and for TU vs. CG it did not include 
Ve, Cho+Cr/Cit or IAUGC.  The area under the ROC curve 
of the combined model was significantly greater 
(p<0.001) than any individual parameter for 
discriminating TU from both PZ and CG. The combined 
model was stable when different subgroups of both 
random voxels and random patients were used to 
generate the discriminant function. When cut-off values 
extracted from the combined model ROC at 90% specificity were applied to individual patients, the sensitivity for prediction of tissue 
type at the MRSI resolution ranged from 79% (larger tumours) to 0% (small tumours), but with high specificity (98 ± 9 [93 – 100] % ). 
Discussion  The greater diagnostic power of the combined model compared with the individual parameters suggests information 
contained in multiple parameters is complementary.  Validation of the combined model by comparison of the predicted tissue class 
of each voxel with the true tissue class gave a substantially lower average sensitivity and specificity for individual patients than 
expected from the population ROC; previous studies have used ROCs as the endpoint and have assumed that they indicate the 
accuracy of predicting tumour in prospective patients. This study demonstrates that the relationship between the ROC and the 
accuracy of locating tumour in a patient is not simple; the accuracy of the ROC is the highest achievable accuracy and if there is large 
inter-patient variability in the data some patients may have very low sensitivities for identifying the DIL. The low number of tumour 
voxels compared with normal voxels also makes selection of the optimal discriminant function cut-off difficult as sensitivity and 
specificity measures are problematic with low numbers of true positives. 
Conclusion  This study shows that a combined model gives greater accuracy in discriminating between tumour and normal prostate 
tissue types due to complementary information in the functional techniques and that the optimal model includes parameters from 
DWI, DCE-MRI, T2, and MRSI. Accuracy of prediction of tumour within a patient is lower than that expected by the ROC curves due 
to high inter-patient variability within the population.  

Fig 1. ROCs for individual functional parameters and the optimal combined 
model for discriminating between TU and PZ (left) and TU and CG (right). 
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