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Target audience – This study will benefit people who are interested in the two compartment model (TCM) for dynamic contrast 
enhanced MRI (DCE-MRI) that is commonly used in both pre-clinical research and clinical detection of cancers. 

Purpose – DCE-MRI plays an important role in clinical detection and diagnosis of cancers.  A simple two-compartment model (TCM) 
of tissue [1] is commonly used to characterize the redistribution of contrast agent following a bolus injection.  Normally a region of 
interest (ROI) is drawn to generate the contrast media concentration v.s. time curve (C(t)), which is then fitted with the TCM to extract 
physiological parameters, such as the volume transfer constant (Ktrans) and the volume of contrast distribution (ve).  However, even 
when the C(t) for each pixel within an ROI satisfies the TCM, C(t) averaged over a heterogeneous ROI (C(t)ROI) may not satisfy the 
TCM due to non-linearity of the model.  The goal of the present work is to evaluate the effect of heterogeneity on physiological 
parameters generated by the TCM. 

Methods – The computer simulations and clinical prostate DCE-MRI data were used to 
evaluate the accuracy of TCM fits of C(t)ROI.  For computer simulations, we used the 
population arterial input function (Cp), of Parker et al. [2].  To study the effects of 
nonlinearity of the TCM, we used the random number generator in IDL (ITT Visual 
Information Solutions) to generate Ktrans and ve for each pixel first, and thereafter to obtain 
C(t) for each pixel (C(t)pixel) satisfying the TCM using the following equation: 
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were used in the computer simulations: (i) The temporal resolution was 3 seconds, and the 
contrast concentration curves were sampled for 20 min.  (ii) The Ktrans(pixel) (min-1) and 
ve(pixel) were generated randomly in the ranges of 0.005 ≤ Ktrans ≤ 1.0 and 0.005 ≤ ve ≤ 0.75 
(based on Langer et al. [3]).  (iii) ROI’s were simulated with 4, 25, 100, 225, and 400 
different pixels (each with randomly generated C(t)pixel).  For each case, the simulations 
were run for 100 times.  (iv) For each case, we took the Ktrans and ve values over all pixels in 
the ROI to get Ktrans(pixel average) and ve(pixel average), as well as the average of C(t)pixel 
over the ROI (C(t)ROI).  (v) Finally, the TCM was used to fit the C(t)ROI obtained in step (iv) 
to extract best-fit values of Ktrans and ve (K

trans(ROI) and ve(ROI)). 

For one clinical DCE-MRI prostate scan, we selected an ROI with 100 pixels.  C(t) for each 
pixel (C(t)pixel) was fitted by the TCM to extract the Ktrans(pixel) and ve(pixel) first, then C(t) 
averaged over 100 pixels was also fitted with the TCM to obtained best-fit values of 
Ktrans(ROI) and ve(ROI). 

Results – For 100 simulations, the range of the goodness-of-fit values (R2) was reduced as 
data from more pixels were averaged (Fig. 1), suggesting that the dominant source of error 
becomes systematic rather than random, when many pixels are used.  Fig. 2 compares the 
Ktrans(pixel average) (obtained by fitting C(t) for each pixel) with Ktrans(ROI) (from C(t) 
averaged over the ROI) from 100 simulations for 4 and 400 pixels.  The Ktrans(ROI) derived 
from fitting C(t)ROI with the TCM was on average 20% to 30% smaller than the Ktrans(pixel 
average).  The fitted ve(ROI) was only an average of 5% smaller than the ve(pixel average).  
As the number of curves increases, i.e., the ROI gets larger, the range of values of Ktrans(ROI) 
decreased.  Finally, Fig. 3 shows clinical DCE-MRI data with the TCM fit to C(t) averaged 
over the tumor ROI (red box in the image with 100 pixels).  The Ktrans(pixel average) = 
0.22±0.08 (min-1) and ve (pixel average) = 0.35±0.06 was larger than the Ktrans(ROI) = 0.20 
(min-1) and ve(ROI) = 0.33 over the ROI.  More importantly, Ktrans(ROI) and ve(ROI) were 
based on relatively poor fits to C(t)ROI, as demonstrated in Fig. 3. 

Discussion – Even when C(t) for each pixel satisfies the TCM, C(t) averaged over a 
heterogeneous ROI may not satisfy the TCM.  The Ktrans derived from fitting C(t)ROI 
significantly underestimates the Ktrans(pixel average).  As data from more pixels were 
averaged, the Ktrans(ROI) and ve(ROI) more closely approximate Ktrans(pixel average) and 
ve(pixel average), but underestimation is still significant.  To increase the sensitivity and 
specificity of diagnosis cancer using DCE-MRI, a smaller ROI or pixel-by-pixel analysis 
would be preferred in clinical practice.  However, heterogeneity is likely to produce significant errors when small ROI’s are used. 

Conclusion – These results demonstrate that the TCM provides good fits for C(t) averaged over an ROI only when each individual 
curve within ROI satisfies the TCM and all pixels have similar contrast uptake and washout rate.  Heterogeneity leads to poor TCM 
fits and errors in Ktrans and ve.  This limits diagnostic accuracy of parameters derived from the TCM. 

Reference: [1] Tofts et al. J Magn Reson Imaging. 1999; [2] Parker et al. Magn Reson Med. 2006; [3] Langer et al. Radiology. 2010. 
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