Model Parameter Correlation for DCE-MRI in Advanced Cervical Cancer

Jesper Folsted Kallehauge¹, Erik Moore Pedersen², Kari Tanderup¹, Finn Rasmussen², Jacob Lindegaard¹, Lars Fokdal¹, Søren Haack¹, and Thomas Nielsen¹

¹Department of Oncology, Experimental Clinical Oncology, Århus, Denmark, ²Department of Radiology, Department of Radiology, Århus, Denmark

Purpose

Recently it has been shown that stratifying patients by certain DCE-MRI parameters can distinguish between patients with better and poorer outcome for advanced cervical cancer. The results from Yuh et al. [1] showed the lowest 10^{th} percentile of the RSI (Relative Signal Increase) to be the best stratifyer. Recent results from Halle et al. [2] have shown the $20-30^{th}$ percentile of A_{Brix} to be the best stratifyer. A number of these derived model parameters are highly correlated [3] and may thus be redundant. If such a correlation can be determined the computationally fastest and most robust approach could be chosen to enhance clinical use of these functional estimates for improving therapy.

Materials and Methods

In total 24 DCE-MRI scans in 11 different patients were included in the study. A 3T Philips Achieva was used with the following DCE protocol: 20-24 slices, 5mm slice thickness, TE/TR: 1.4ms/2.9 ms , 10° Flip Angle (FA) , 2,27mm isotropic in-plane resolution . The bolus injected was 0.1 mmol/kg Dotarem at 4ml/s, followed by a 5 ml saline flush. 120 dynamics equidistantly spaced by 2.1 sec were acquired. Tumor delineation was performed by an experienced oncologist on T2W images. The models tested and parameters estimated were: the Tofts model ($k_{ep,std}$ and $K^{trans,std}$), the extended Tofts model (v_p , $k_{ep,extend}$ and $K^{trans,extend}$), the Brix-Hoffman model (A_{Brix} , $k_{ep,Brix}$ and k_{el}), the Relative Signal Increase of the first 90 seconds (RSI₉₀) and initial Area under the Curve (iAUC₉₀). R² and Normalized Mutual Information (NMI) were determined for sets of parameter pairs.

Figure 1A: Four different DCE parameter estimates

Figure 1B: Woxelvise scatterplot for $iAUC_{90}$ vs A_{Brix} (blue) and 10*RSI₉₀ vs A_{Brix} (red)

Results

In Figure 1A an example of the spatial distribution of different modeling parameter is shown. A voxelwise scatterplot of the same data are shown in figure 1B. The R^2 value indicates that the 91% of variability of the iAUC₉₀ is explained by the A_{Brix} factor if assuming a linear relation between parameters. R^2 and NMI for the 24 scans for a subset of parameter are shown in table 1.

Table 1	iAUC ₉₀ /K ^{trans,extend}	A _{Brix} /K ^{trans,extend}	iAUC ₉₀ /A _{Brix}	RSI ₉₀ /A _{Brix}	A _{Brix} /RSI _{max}	K ^{trans,std} /A _{Brix} *k _{ep,Brix}
R ²	0.59±0.19	0.58±0.17	0.82±0.15	0.73±0.17	0.83±0.13	0.55±0.15
NMI	0.58±0.15	0.57±0.16	0.64±0.11	0.61±0.13	0.61±0.12	0.53±0.14

Discussion

The parameters that best describe the same mechanism are $iAUC_{90}$ and A_{Brix} followed by RSI and A_{Brix} . The latter correlation might explain the consistent results from [1] and [2]. Also worth noticing is that the often cited correlation [4] between K^{trans,std} and $A_{Brix}*k_{ep,Brix}$ only reaches R²=0.55 in these tumors of advanced cervical cancer. K^{trans} describes the permeability/leakage from the vessels into the interstitium and is determined mostly by the initial slope of the tissue curve. The A_{Brix} and similarly RSI mostly describe the maximum buildup of contrast in the tissue and is related to the extracellular extravascular fraction. Both K^{trans} and A_{Brix} have been shown to correlate with hypoxia and thus radioresistance though they describe different aspects of tumor blood flow.

Conclusion

Estimation of outcome in patients with advanced cervical cancer by measuring A_{Brix} [2] can potentially be replaced by estimating the much less computationally intensive parameter iAUC₉₀ or RSI_{max}. This could stimulate broader clinical use of DCE-MRI for estimating outcome in patients with advanced cervical cancer.

[1] Yuh, W., et al, Predicting control of primary tumor and survival by DCE MRI during early therapy in cervical cancer, Invest Radiol, 2009, 44 [2] Halle, C., et al., Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast enhanced MRI, Cancer Res, 2012. 72 [3] Donaldson, S. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med, 2010, 63 [4] Cho, H. et al, Noninvasive Multimodality Imaging of the Tumor Microenvironment: Registered Dynamic Magnetic Resonance Imaging and Positron Emission Tomography Studies of a Preclinical Tumor Model of Tumor Hypoxia, Neoplasia, 2009, 11.