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Introduction: The analysis of imaging parameters in the liver has become of increased importance for the evaluation of diffuse conditions such as 
fibrosis, inflammation and iron deposition. Although a series of parametric imaging techniques have been developed, the analysis of parameters maps 
is mainly restricted to an ROI within the liver. Whole liver analysis, as opposed to the analysis of an ROI, should yield a better representation of the 
disease and if the analysis is automated it can be used routinely in the clinic. In this work, 
we present a combined liver and vessel segmentation technique that is used with a radial 
gradient and spin-echo GRASE (radGRASE) acquisition strategy [1]. radGRASE yields 
two important parameters for the characterization of diffuse liver disease [2]: a T2 map 
of the water component (T2w) and a fat fraction (FF) map. These two maps are 
registered by the nature of the acquisition, thus providing unique properties for automatic 
segmentation.  We have initially tested the segmentation method using a simulated 
liver phantom [3]. We are now evaluating the method in vivo using a set of 18 
liver images (from 4 subjects) and compared to the results of manual 
segmentation.  
 Methods: The radGRASE acquisition scheme used in this work was based on the 
collection of 4 gradient echoes per spin-echo period. All four gradient echoes are 
used to obtain initial fat-water estimates, corrected for the effects of field in 
homogeneities.  For T2 estimation, the gradient echoes that are closest to the SE 
point were used to generate images at various TEeff from which the T2w and the 

final fat and water images 
and FF maps are calculated 

[1]. Thus a single breath hold acquisition yields: a water (anatomical) image and the T2w and 
FF maps as shown in Fig. 1.   Since on every TR period we sample data from all TEs and from 
all echoes used in the fat-water estimates, the resulting T2w and FF maps are perfectly 
registered. For the evaluation of the segmentation algorithms we used abdominal (axial) 
images acquired at 1.5T (GE Signa NV-CV/i scanner) with BW=±125 kHz, ETL=12, matrix 
size=256×192, TR=1s, NEX=1, slice thickness=8 mm. Because the acquisition of data was 
limited to a breath hold (18 s), the number of radial views per TE was highly undersampled (16 
radial views per TE). An echo sharing technique was used to reconstruct the images at the 12 
TE time points.  
 The segmentation process consisted of two steps: Segmentation of liver from surrounding 
tissue followed by blood vessels segmentation within the parenchyma. As seen in Fig. 1, the 
FF map gives the best contrast between liver and surrounding tissue, thus it was used for liver 
boundary  segmentation using a multi-snake [4] based gradient vector flow method [5] (Fig. 
2a). Fig. 2b shows the evolution of the multi-snake scheme, Fig. 2c shows the results of 
merging all the common snake boundaries and Fig. 2d shows the segmented liver applied to 

the anatomical image.  The mask generated from step 1 was transferred to the T2w map (Fig. 2e; since the maps are perfectly registered) for vessel 
segmentation.  The vessel segmentation step consisted of: an edge map, created using the Canny operator (Fig. 2f), followed by dilation (Fig. 2g) and 
a filling operation. An intensity based threshold applied to the T2w map is then combined with the dilation to give the resulting vessel map (Fig. 2h).  
 A mask of the liver parenchyma without vessels was then created to generate T2w histograms.  For comparison purposes we also generated a mask 
without vessel segmentation. To avoid including pixels in the histograms corresponding to 
T2w fitting noise we limited the T2w values such that pixels with high (>200) or very low 
intensity (<5) were not included in the histograms. As “truth” for the segmentation 
algorithms we used the same images but where the liver and vessels were segmented 
manually in consultation with an experienced radiologist.  
Results: Fig. 3 shows histograms for one of the subjects in our study. The histograms 
correspond to liver masks without vessel removal (red), vessels removed (blue) and “truth” 
(green). Table 1 shows histogram parameters for the three cases. Clearly, the mean and SD 
values of the proposed method are very close to “truth”.  Fig. 4 is a plot of T2w mean and 
SD for all 18 slices. We can see that data processed with the proposed method (blue dots) 
cluster with the data for “truth” (green dots).  When vessel are not removed (red dots), 
however, the means and SD are clearly higher than truth. On average the difference between 
means of the proposed method and truth over the 18 slices analyzed is 0.79. 
Conclusions An automated liver parenchyma and vessel segmentation method for radial GRASE data was presented. With the proposed 
segmentation method one can identify the liver parenchyma and its vessels. In a data set of 18 slices (from 4 subjects) we showed that the proposed 
approach yields T2w mean and SD that are very close to manual segmentation (truth). This methodology should facilitate the analysis of liver 
parameter maps in a clinical setting. 
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Table 1 Mean T2w 
(ms) 

St. Dev. 
T2w 

Without vessel 
Removal 

54.39 13.59 

Proposed Method 51.30 7.46 
Truth 51.72 7.03 
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