¹⁹F Apparent Diffusion Coefficient MRI of Inert Fluorinated Gases in Human Lungs

Iain K. Ball¹, Marcus J. Couch^{1,2}, Tao Li^{1,2}, Matthew S. Fox¹, Jordan A. Lovis^{1,2}, Ralph Hashoian³, Shalyn L. Littlefield¹, Birubi Biman⁴, and Mitchell S. Albert^{1,2} ¹Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada, ²Lakehead University, Thunder Bay, Ontario, Canada, ³Clinical MR Solutions, Brookfield, Wisconsin, United States, ⁴Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada

Introduction: Hyperpolarized noble gas MRI using ³He or ¹²⁹Xe has emerged as a powerful technique for detecting microstructural changes in the lungs by measuring the apparent diffusion coefficient (ADC) of inhaled gases. ADC has been previously measured in human lungs using hyperpolarized ³He MRI, which shows a strong correlation with tissue destruction and emphysema (1). More recently, ADC has been measured in patients with chronic obstructive pulmonary disease (COPD) using hyperpolarized ¹²⁹Xe MRI (2). Although these are very exciting developments, hyperpolarized noble gas MRI is not widely used because it is a complicated and expensive technique that requires specialized hardware. A possible alternative to hyperpolarized noble gases as a probe for measuring ADC is the use of inert fluorinated gases (SF₆, C₂F₆, C₃F₈) as an inhaled signal source for ¹⁹F MRI of the lungs. Density-weighted ¹⁹F imaging of inert fluorinated gases was initially reported in rat lungs 14 years ago (3). These gases have the advantages of being nontoxic, abundant, inexpensive, and they do not need to be hyperpolarized prior to their use in lung MRI. ADC measurements using inert fluorinated gas MRI of ¹⁹F MRI of inert fluorinated gases by performing density-weighted lung imaging in a healthy human subject (7). To our knowledge, ¹⁹F ADC measurements have not been previously reported from the lungs of human subjects breathing inert fluorinated gases. In the present study, a ¹⁹F 3D ultra-short TE (UTE) ADC pulse sequence was optimized for imaging human lungs with inert fluorinated gases at 3T.

Methods: This study protocol was approved by the local research ethics board and by Health Canada. All subjects provided written and informed consent prior to their participation in this study. Digital pulse oximetry was used to measure oxygen saturation (S_pO₂) for all subjects during scanning sessions. Imaging was performed using a 3.0 T Philips Achieva scanner with a flexible wrap-around quadrature transmit/receive coil tuned to the ¹⁹F resonant frequency (Clinical MR Solutions). The ¹⁹F coil was actively proton blocked to allow for ¹H imaging while the subject was lying in the ¹⁹F coil. ¹H images were used as reference scans for planning 3D ADC-weighted ¹⁹F images. Immediately prior to imaging, a healthy male subject inhaled a 1 L mixture of 79% C₃F₈ (perfluoropropane [PFP]) and 21% O2 from a Tedlar bag. During a 33 second breath-hold, two 3D UTE images were acquired: an ADC-weighted image (b-value = $1.33 \text{ s} \cdot \text{cm}^{-2}$, diffusion time = 1 ms) followed by an image without diffusion weighting. Image acquisition parameters were the following: TR = 34 ms, TE = 2.2ms, flip angle = 68° , 75% radial sampling density, in-plane FOV = $450 \times 450 \text{ mm}^2$, matrix = 64 x 64, three slices, thickness = 50 mm and a bandwidth of 140.7 Hz/pixel. Trajectory delays were optimized in order to compensate for eddy currents and gradient delays.

Figure 1: (a) ¹⁹F 3D UTE lung images acquired in a healthy subject, and (b) the corresponding calculated ADC maps.

Results and Discussion: Figure 1(a) shows three slices from the ¹⁹F 3D UTE image without diffusion weighting. The SNR in the center slice image was approximately 15. Figure 1(b) shows the ADC maps that were calculated from the images shown in Figure 1(a). Figure 2 shows the histograms corresponding to all three ADC maps shown in Figure 1(b). The mean ADC values were $0.034 \pm 0.021 \text{ cm}^2 \text{ s}^{-1}$, $0.023 \pm 0.018 \text{ cm}^2 \text{ s}^{-1}$, and $0.025 \pm 0.017 \text{ cm}^2 \text{ s}^{-1}$ for Figures 2 (i), 2 (ii), and 2 (iii), respectively, where the error represents the heterogeneity in each respective ADC map. The ADC values reported in this study are similar to previously published values for the free diffusion of PFP (6). This is to be expected for a diffusion time of 1 ms and the subsequent diffusion length scale that was probed. A longer diffusion time will be required to reach the restricted diffusion measurements, the lower diffusivity of ¹²⁹Xe, and other heavy gases such as PFP, compared to ³He, may be one contributing factor leading to slower filling and lower diffusion in the terminal airways, possibly leading to larger disease-related defects (8). The subject's measured oxygen saturation never fell below 90%, and inhalation of the PFP/O₂ mixture was well tolerated. The use of a gas mixture containing 21% O₂ allows for continuous breathing; however, it should be noted that mixing PFP with other gases would increase the free diffusivity of PFP. In the future, ADC will be measured in patients with COPD using inert fluorinated gas MRI and compared to similar ADC measurements in healthy subjects.

Conclusion: This preliminary study effectively demonstrates the excellent potential of ¹⁹F 3D UTE for measuring ADC in human lungs using inert fluorinated gases. This technique promises to provide valuable diagnostic information in the diagnosis and treatment of chronic respiratory diseases, such as COPD.

References:

- [1] Evans A *et al.*, (2008) J Appl Physiol 105:693–699.
- [2] Kaushik SS *et al.*, (2011) *Magn Reson Med* 65:1154–1165.
- [3] Kuethe DO et al., (1998) Magn Reson Med 39:85-88.
- [4] Chang YV et al., (2006) J Magn Reson 181:191–198.

[5] Perez-Sanchez JM *et al.*, (2005) *Magn Reson Med* 54:460–463.
[6] Jacob RE *et al.*, (2005) *Magn Reson Med* 54:577–585.

- [7] Soher *et al.*, (2010) *Proc. ISMRM*. p 3389.
- [8] Kirby et al., (2012) Radiology 265:600–610.

Figure 2: ¹⁹F ADC histograms corresponding to the ADC maps shown in Figure 1(b). Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 1483.