MRI EQUILIBRIUM SIGNAL MAPPING IS A QUANTITATIVE AND REPRODUCIBLE ALTERNATIVE TO CT FOR THE ESTIMATION OF LUNG DENSITY IN COPD

Weijuan Zhang^{1,2}, Penny L Hubbard^{1,2}, Eva Bondesson³, Lars Wigström⁴, Simon S Young⁵, David Singh⁶, Josephine H Naish^{1,2}, and Geoffrey JM Parker^{1,2}

¹Centre of Imaging Sciences, The University of Manchester, Manchester, United Kingdom, ²Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom, ³Camurus AB, Lund, Sweden, ⁴Respiratory &Inflammation Therapy, Clinical development, AstraZeneca, Mölndal, Sweden, ⁵Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, United Kingdom, ⁶Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom

Introduction: In MRI, the equilibrium tissue magnetisation is proportional to tissue water density. The aim of this study was to explore the feasibility and reproducibility of mapping the signal (S_0) associated with the equilibrium magnetisation in the assessment of structural abnormalities in COPD. We compare quantitative $S_0(qS_0)$ values with CT measures of lung tissue density.

Method: Ethical approval and written informed consent were obtained. <u>MRI:</u> MRI images were acquired in 12 COPD patients (64±7 yrs, GOLD stage 2-3) and 12 healthy volunteers (63±12 yrs) twice within 1 week on a 1.5 tesla Philips Achieva using a coronal 2D inversion recovery half-Fourier single-shot turbo spin-echo sequence for the measurement of T_1 and S_0 maps via pixelwise fitting ¹. Lung S_0 values were normalized by dividing by muscle S_0 to provide a quantitative S_0 (qS_0) value to account for day-to-day scanner settings. Short TE was used to minimise T_2 influence on the qS_0 values. Scanning parameters: TR/TE 6000 ms/3.2 ms, TI=50, 300, 1100, 2000, 5000 ms, 128 x 128 matrix, 10 mm thickness, pixel size 3.52 mm x 3.52 mm, free breathing, no respiratory or cardiac triggering. All images were registered to the position of end expiration ². <u>Quantitative CT:</u> multi-slice CT was performed once on COPD patients only. A single slice which matched the MRI slice was selected for the calculation of the 15th percentile lung density (PD 15) and the relative lung area with attenuation value less than -950 HU (RA -950).

Result: All COPD patients showed moderate to severe emphysema in the selected CT slices, with the RA-950 ranging from 8.3% to 41.8%. qS_0 maps of the lung were reproducible in both groups (Figure. 1). The Bland-Altman plots (Figure. 2) show a good agreement between the two measurements of the mean qS_0 values of the lung, with an intraclass correlation coefficient (ICC) of 89.3% for healthy group and 88.5% for COPD group. The low value areas in qS_0 maps of the COPD lungs (blue) had a good consistency with the CT detected emphysema areas (red). The mean lung qS_0 value was significantly lower in COPD group than in healthy group, while the inter quartile range of mean lung qS_0 values of the two groups were similar (Table. 1). The mean and the 15th, 25th, 50th (median), 75th percentile qS_0 values showed strong positive correlations with PD₁₅ and negative correlations with RA -950 (Table. 2, Figure. 3).

Conclusion: Equilibrium signal maps extracted from MRI correlate strongly with CT density estimates, indicating that qS_0 may be a reproducible, non-invasive, non-ionising measure for quantifying lung density abnormalities in COPD.

References: 1) Kingsley, P.B. and Gordon Monahan, W., Magn Reson Imaging, 2001. 19(2): p. 279-282. 2) Naish, J.H., et al., Magn Reson Med, 2005. 54(2): p. 464-469. Acknowledgement: This work was supported by the EPSRC and AstraZeneca.

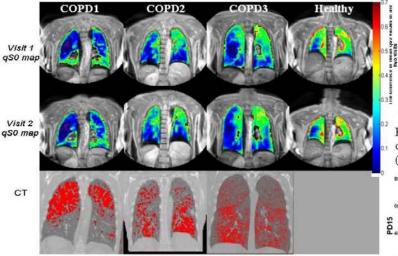
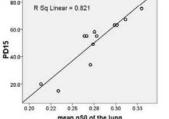



Figure. 1. Example lung qS_0 maps and the corresponding CT images with areas of attenuation value below RA -950 HU showing in red.

Healthy qS_{θ} The average of mean q80 values of the two visits

The average of mean q80 values of two visits

Figure. 2. Bland-Altman plots comparing the two measurements of the mean lung qS_0 in healthy group (left) and COPD group (right).

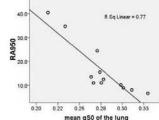


Figure. 3. Scatter plots showing the correlation between lung qS_0 values and PD₁₅ (left) and RA_{.950} (right) in COPD

Table.2. Pearson correlation between lung qS_0 values and CT parameters

15th centile 50th centile 25th centile 75th centile Mean qSqS. qSqSqS0.837** 0.866** 0.887** PD15 0.919** CC 0.906** RA-950 -0.878** -0.820** -0.823** -0.877** -0.875**

[†]Correlation coefficient; ** p value < 0.01.

Table 1 The comparison of the lung qSo between 2 groups

	Healthy	COPD	p-value
mean qS_0	0.39 ± 0.05	0.28 ± 0.03	< 0.001
$IQR_q S_o$	0.13 ± 0.02	0.14 ± 0.02	0.547