Towards Myocardial T₂^{*} Mapping at 7.0 T: Assessment and Implications of Static Magnetic Fields Variations

Fabian Hezel¹, Peter Kellman², Lukas Winter¹, Oliver Kraus¹, Katharina Fuchs¹, and Thoralf Niendorf^{1,3}

¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany, ²Medical Imaging Section, National Institutes of Health / NHLBI, Bethesda, Maryland, United States, ³Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany

TARGET AUDIENCE This work is of interest for clinicians, clinical scientists, basic researchers and engineers interested in susceptibility weighted cardiac MR imaging or other imaging applications which require a uniform B₀ distribution at ultrahigh magnetic fields.

PURPOSE Emerging cardiovascular magnetic resonance (CMR) imaging applications include T_2^* relaxation sensitized techniques, which are increasingly used in basic research and (pre)clinical imaging. The linear relationship between magnetic field strength and microscopic susceptibility renders it conceptually appealing to pursue myocardial T_2^* mapping at ultrahigh magnetic field strengths. For T_2^* sensitive imaging techniques it is important to reduce static macroscopic field inhomogeneities across the heart to make susceptibility weighted imaging dominated by microscopic B₀ susceptibility gradients, rather than by macroscopic B₀ field inhomogeneities. For this reason, this work carefully examines B₀ field distributions across the heart and reports implications for myocardial T_2^* mapping at 7.0T.

METHODS Volunteer experiments were performed on a 7.0T whole body MR system (Magnetom, Siemens Healthcare, Erlangen, Germany). First and second order shim currents were calculated based on cardiac triggered B_0 field map. The B_0 field map was obtained as an axial stack covering the whole heart (Fig. 1a) with a multi-echo gradient echo sequence (T_E =2.04ms and 4.08ms, matrix size=96x72, 18 slices) within a single breathhold. The shim volume was adjusted to cover the ventricles

and the atria in the 4 chamber view and was adjusted along a stack of short axis views of the heart (Fig 1b/c). Standard global B₀ shim and volume selective shim were analyzed via a higher resolution field map, which was was obtained for short axis and 4 chamber views. The imaging parameters for this 2D cardiac triggered multi echo gradient echo were: in-plane resolution=1.4x1.4mm², slice thickness=2.5mm, nominal flip angle=25°, TEs=1.87, 2.12, 2.37, and 2.62ms. The field map was reconstructed via the VARPRO formulation with graphcut optimization [1]. T₂^{*} mapping was conducted using equidistant T_Es ranging from 2.04 to 10.20ms and a voxel size of 1.4x1.4x4mm³

RESULTS Figure 2 depicts B_0 maps (Fig. 2a) together with B_0 profiles across the heart (Fig. 2b) and B_0 histograms (Fig. 2c) obtained prior and after volume selective shimming for a four chamber view. The Bo field maps following global shimming showed a mean peak-to-peak field difference of approximately 300Hz across the long axis of the ventricles. After volume selective shimming, a mean peak-to-peak B₀ difference of approximately 80Hz was found for the same region. Along the short axis of the heart a peak-to-peak Bo difference of approximately 160Hz was observed before volume selective shimming. After volume selective shimming the peak-to-peak B₀ difference was reduced to 80Hz. The strongest susceptibility gradient of 14Hz/pixel was found for the inferior segment of the heart indicated by the arrows in the T_2^* map shown in Fig. 2d. A maximum in-plane field gradient of approximately 14Hz/mm (through-plane approximately 60Hz/voxel for a 4mm slice thickness) was observed at the myocardium/epicardial fat/lung interface of the inferior and inferolateral segment as indicated by the B_0 maps and frequency profiles shown in Figure 2 a/b. This local B_0 gradient translates into a phase loss of approximately 60% at the maximum echo time of $T_E=20$ ms used for T_2 mapping. However, the field gradient at the myocardium/epicardial fat/lung interface is much more pronounced versus the through-plane field gradient obtained for the left and right ventricle, which showed a mean of 3Hz/mm as indicated in Figure 2b. For myocardial anterior, anterolateral and inferoseptal segments a mean in-plane B₀ gradient of approximately 3Hz/mm was obtained which translates into an through-plane B_0 dispersion of approximately 12Hz/voxel for a 4mm slice thickness. This B₀ gradient implies that macroscopic intravoxel dephasing effects are of minor effect for the T_{E} range used for T_{2}^{*} mapping. The T_{2}^{*} maps acquired after volume selective shimming showed reduced susceptibility artifacts and a more uniform distribution of T₂^{*} values across the myocardium. Please also note the difference in T_2^{*} between left and right ventricular blood pool.

DISCUSSION Our B₀ mapping results suggest that a reasonable B₀ uniformity across the heart and the left ventricle can be achieved at 7.0T which is embodied by a mean through-plane gradient of 3Hz/mm across the left ventricle. The frequency shift across the heart observed at 7.0T compares well with previous 3.0T studies which reported a peak-to-peak off-resonance variation of 121±31Hz using localized linear and second-order shimming [2]. The use of an enhanced locally optimized shim algorithm, which is tailored to the geometry of the heart, afforded a reduction of the peak-to-peak frequency variation over the heart from 235Hz to 86Hz at 3.0T [3]. Our studies suggest that third-order and even higher order shims might help to further enhance B₀ uniformity across the across the heart at 7.0T. Obviously, another approach to further reduce the residual impact of through-plane gradients and intra-voxel dephasing B₀ gradients is the use of even thinner slices and the reduction in voxel size. To meet this goal we pushed the envelope by using a slice thickness as thin as 2.5mm together with an in-plane resolution of 1.1x1.1mm² for T₂⁺ mapping. This slice thickness and in-plane resolution is afforded by the SNR advantage inherent to 7.0T. The corresponding voxel size is by a factor of five smaller than commonly used for T₂⁺ mapping at 1.5T and 3.0T.

CONCLUSION Our results underscore the challenges of myocardial T_2^* weighted imaging at 7.0T due to the propensity to macroscopic susceptibility artifacts and T_2^* shortening, but demonstrate that these issues can be offset by using tailored shimming techniques.

REFERENCES: [1] Hernando et al (2010) Magn Reson Med 63:79 [2] Schaer et al (2004) Magn Reson Med 51:799 [3] Schaer et al (2010) Magn Reson Med 63: 419.

Figure 1: a) Planning of the axial field map used for B_0 shimming. Placement of a cubic shim volume in **b)** a 4 chamber view and in **c)** a short axis view of the heart.

Figure 2: a) B_0 field map before and after volume selective shimming **b)** profile of frequency distribution along the long and short axis of the heart c) histogram of frequency distribution over left ventricle **d)** corresponding T_2^* map generated before and after volume selective shimming.