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Introduction: Phase contrast MRI is widely used to noninvasively measure blood velocity and flow in vivo1. PC-MRI can derive all three velocity components within a 
3D imaged volume. The velocity field can then be used to obtain flow pattern, wall shear stress, vascular compliance, blood pressure, and other hemodynamic 
information. The relative pressure drop across a stenotic narrowing provides an important indication regarding the hemodynamic severity of a stenosis and is a 
significant physiologic parameter in the planning of revascularizations. 
The law of conservation of momentum (Navier-Stokes equation), governs motion of Newtonian fluids. If we assume that viscosity is constant, Navier-Stokes equation 

can be written as: ∇P  ෢ = −ρ ப୳ப୲ −  ρ(u. ∇)u +  μ∇ଶu +  ρf  where u(x,y,z,t) is the fluid vector velocity from  PC MRI, P is the scalar pressure, ρ is the density of the fluid 

and f is the body force. Due to the noise in PC-MRI velocity data, the pressure gradient field ∇P  ෢ =(P୶෡ , P୷෡ , P୸෡ ) is not curl-free, and therefore it cannot be the true gradient 
of the scalar pressure field. An extremum principle is cast to find P such that ∇P is the projection of ∇P෢  onto the curl-free subspace of integrable vector fields. The 
conventional approach to the corresponding numerical optimization is based on the iterative solution to the pressure-Poisson equation2. 
Non-Iterative Harmonic-Based Orthogonal Projection: In lieu of the iterative approach, and provided a series of orthogonal integrable basis function ϕ(x, y, z, ωഥ) 
with ωഥ  as the vector (ω୶,  ω୷,  ω୸) of spatial frequencies, the pressure P ෩ can be expanded as: P ෩ =  ∑ C෨ (ωഥ)  ϕ(x, y, z, ω). Its gradients will 

have  P୪ ෪ =  ∑ C෨ (ωഥ) ϕ୪(x, y, z, ω), with ϕ୪ = பம ப୪   and l = x, y, z. The measured gradient can also be expanded as P୪ ෢ =  ∑ C୪෡  (ϖ) ϕ୪(x, y, z, ω). Following Frankot and 

chellappa3, the coefficient of expansion of the projected pressure P ෩ onto an integrable subspace, is related to C୶෢, C୷෢, and C୸෢  by C ෩ = C౮෢ T౮ା C౯෢  T౯ାC౰෢ T౰T౮ାT౯ାT౰  where T୪ ׬= |ϕ୪|ଶ ℝయ  dx dy dz. Therefore, by substituting C ෩(ωഥ) into equation for  P ෩ , integrable pressure gradients and the correctly integrated pressure field can be obtained. Note 

that the pressure field is reconstructed in one-pass (with no iterations) using all of the available information in P෡୶, P෡୷ and P෡୸.  
In this paper, Fourier basis functions are adopted for ϕ(ωഥ) for convenience and speed of computation offered using the fast Fourier Transform (FFT). The key 
differences between Frankot and Chellapa’s3 method and our method are: (i) Since FFT needs to be applied to a 3D cubical domain, while PC velocity information is 
only available within the vessel lumen, the PC data needs to be extrapolated at the boundaries in order to remove discontinuities and (ii) FFT assumes that the data is 
periodic and, therefore, a discontinuity in the periodic extension of pressures will exist which once again needs to be removed. 
Imaging: Experiments were carried out using a closed loop flow system with an 87% area stenotic narrowing under constant flow Q=13.2 ml/s (Reynolds number = 
160) and Q=39.6 ml/s (Reynolds number = 480). Imaging was performed on a Philips Achieva 1.5T scanner (Philips Healthcare, Best, NL) using an 8 element phased-
array knee RF coil. To measure the velocities, a multi-slice 2D turbo gradient echo sequence was utilized that included a bipolar velocity encoding gradient in a single 
predetermined direction. Conventional Cartesian trajectory was chosen for image acquisition. The remaining sequence parameters were as follows: FOV = 96x96 mm, 
1.5x1.5 mm acquired in-plane resolution, 4 mm slice thickness, flip angle = 5, matrix size = 64x64, TR/TE = 7.6/4.4 ms (Re = 480) and 8.0/5.0 ms (Re = 160).  
CFD: Computational Fluid Dynamic (CFD) simulations were carried out for two steady flow experiments by solving the 3D unsteady Navier-Stokes equations were 
numerically solved using the finite element formulation. For this purpose, the geometrical model of stenotic phantom was reconstructed from high-resolution CT and a 
finite element grid covering the conduit was generated. The computational grid contained about 8 million tetrahedral elements. 
Results: Two types of comparisons were made: in one instance, the pressures derived from noise-corrupted CFD velocities using both the new 3D non-iterative 
pressure calculation technique as well as the iterative solution to pressure-poisson equation were compared with CFD simulated pressures. In a second instance, the 
pressures derived from in-vitro MRI studies were compared with pressures directly generated with CFD. In adding noise to CFD-simulated velocities, Gaussian 
distributed noise with zero mean and variance of ߪ ଶ was used. Table 1 reports the relative error R. E. =  ௉஽೎ି௉஽಴ಷವ ௉஽಴ಷವ ∗ 100 %  in computing the pressure drop (PD) 

between the calculated pressures and CFD simulated pressures for a range of 
standard deviation for noise. As can be seen in table1, the non-iterative method 
is a bit more sensitive to noise rather than iterative method, however results are 
still in acceptable range.  
Figure 1 shows comparison between 3D CFD simulated pressures and 3D 
calculated pressures by iterative and non-iterative techniques for Reynolds 
numbers of 160 and 480 for in-vitro MRI data. As may be seen, the iterative 
method slightly underestimates the pressures relative to the non-iterative 
method. Finally, for the in-vitro studies described here, the computational time 
for obtaining the relative pressures was 4.83 seconds on a quad core 2.4 GHz 
CPU processor with 8GB of memory for deriving the 3D pressure field from 50 
axial PC MRI slices. This is to be compared with 87.4 seconds for the iterative 
approach on the same platform. 
Discussion and Conclusion: In this paper, we have introduced a new 3D non-
iterative method which results in significant computational savings for 
calculation of intravascular pressures from phase-contrast MRI while providing 
good accuracy. Results from simulations and in-vitro phantom studies showed 
good agreement between the new non-iterative method and the conventional 
iterative method and pressure maps directly generated by CFD. As 
demonstrated, when using Fourier basis functions, the algorithm applies three 
3D FFT’s and one inverse 3D FFT to arrive at the results.  
Future work will involve application of the method to pulsatile stenotic flows 
in phantom experiments as well as to data acquired in patients with 
atherosclerotic disease. 
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Flow Regime   Method R.E. 

Re=160 
Iterative  8 % 7 % 6 % 8 % 2 % 
Non-iterative 12 % 11 % 7 % 0 % 3 % 

Re=480 
Iterative  7 % 7 % 9 % 8 % 4 % 
Non-iterative  14 % 13 % 10 % 5 % 2 % 

Table 1. Relative error (R.E.) when comparing the pressure drop between the 
calculated and CFD simulated pressures for both iterative and non-iterative methods 
for Reynolds number 160 and 480 for a range of additive Gassuian noise powers. 

 
Figure 1: Comparison of CFD simulated pressures (red line) with those calculated 
with the iterative method (blue dotted line) and non-iterative method (black dotted 
line) using in-vitro PC-MRI data for constant flows with Reynolds numbers Re = 
160 (left) and Re = 480 (right). Please note that only pressure along the centerline of 
the phantom has been displayed.

1346.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


