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Introduction Fourier velocity encoded (FVE) MRI [1] is useful in the assessment  
of vascular and valvular stenosis [2] and intravascular wall shear stress [3,4], as it 
eliminates partial volume effects that may cause loss of diagnostic information in 
more conventional phase-contrast MRI [5]. FVE MRI has not been adopted for 
any routine clinical applications, primarily because scan-time is prohibitively 
long. However, FVE shows great potential for compressed sensing (CS) 
acceleration [6], due to its high dimensionality and intrinsic sparseness in image 
domain. Gamper et al. successfully applied CS to FVE imaging, using a Fourier 
transfom along the temporal dimension as sparsifying transform [7]. In this work, 
we investigate other sparse representantions for FVE data, using a five-
dimensional (x,y,z,v,t) FVE dataset of the neck (focusing on carotid flow). 
Several combinations of separable transforms were evaluated. Two promising 
combinations of transforms are proposed. 

 

Data acquisition  Multi-slice CINE spiral FVE scans were performed on a GE 
Signa 3T EXCITE HD system (40 mT/m, 150 T/m/s gradients), using a 4-channel 
carotid coil. Scan parameters:1.4×1.4×5 mm3 spatial resolution (8×1012-sample 
variable-density spiral readouts), 5 cm/s velocity resolution (32 velocity encodes), 
12 ms temporal resolution (43 cardiac phases), 5 axial slices, 146-second 
acquisition per slice (256 heartbeats at 105 bpm). Reconstruction was performed 
in MATLAB using using the non-uniform FFT toolbox by Fessler JA. 
 

Search for sparse representations Methods: Evaluated transforms included 
Fourier, cosine, finite differences, and several wavelet transforms, combined in 
various form along the five dimensions. For each evaluated combination of 
separable transforms, the coefficients were sorted in descending order of energy. 
The cumulative sum of the energy coefficients was calculated, and then 
normalized to 100% of the dataset’s energy. Based on these curves, we assessed 
the sparsity of each representation, searching for those with the fastest approach 
to 100% of the energy. Results: Figure 1 shows curves of energy vs. number of 
coefficents for the two best representations (inset) among those evaluated (under 
our criterion for sparsity), and for the non-transformed data (blue curve). The 
green curve refers to a combination of Daubechies 2 (along x,y) and Haar (along 
z,t) wavelets. The red curve refers to a combination of biorthogonal 3.1 (along 
x,y,v) and Haar (along z,t) wavelets. 
 

Qualitative evaluation Methods: For the two representations highlighted above, 
we reconstructed the image domain data from only the 1% or 0.1% largest 
transform coefficients. Results: Figure 2 compares the results for these two 
representations, for a voxel selected at the right carotid bifurcation (healthy 
volunteer). Although the results in Fig. 1 suggest that the representation using 
bior3.1+Haar was more promising, from this experiment we found that the 
representation using db2+Haar provided better results, including a denoising 
effect for the 1% results. Using only 0.1% of the coefficients, db2+Haar still 
outperforms the bior3.1+Haar representation, but significant artifacts arise. 
 

Conclusion  We evaluated several combinations of separable sparsifying 
transforms for FVE data of the carotids. Two very promising represantions are 
proposed. These were able to efficiently sparsify the evaluated data, with no 
significant loss of diagnostic information using only 1% of the transformed 
coefficients. Using a combination of Daubechies 2 (along x,y) and Haar (along 
z,t) wavelets, no artifacts were observed, and a denoising effect was realized. This 
representation should be further evaluated for other sets of data (e.g., patients, 
cardiac). Nevertheless, these results are an important first step towards fulfilling 
the great potential of CS acceleration for FVE imaging. 
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Fig.1: Curves of energy vs. number of coefficents for the two 
best representations (inset) among those evaluated, and for the 
non-transformed data (blue curve). The green curve refers to a 
combination of Daubechies 2 (along x,y) and Haar (along z,t) 
wavelets. The red curve refers to a combination of biorthogonal 
3.1 (along x,y,v) and Haar (along z,t) wavelets. 
 

 
Fig. 2: FVE velocity distributions for a voxel at the right carotid 
bifurcation of a healthy volunteer, reconstructed from only the 
1% or 0.1% largest transform coefficients. The two 
representations highlighted in Fig.1 are compared. 
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