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Introduction: Many respiratory motion compensation techniques have been 
proposed to correct for the respiratory-induced heart motion in cardiac MRI [1]. A 
right-hemidiaphragmatic navigator (NAV) is the most commonly used method 
that monitors the respiratory motion of the right-diaphragm along the superior-
inferior (SI) direction with acceptance during a narrow gating window [2]. 
Recently, a two-dimensional (2D) image-based NAV has been presented to 
compensate for the respiratory motion of the heart along the SI and right-left (RL) 
directions, and to increase the size of the gating window [3]. In addition to the SI 
and RL motions, respiratory motion may also occur along the anterior-posterior 
(AP) direction [4, 5, 6]. In this study, we sought to develop and evaluate a 3D 
image-based NAV (3D-NAV) to estimate the respiratory motion along the three-
directions to increase gating efficiency and improve image quality. Experiments 
using phantom and human studies were performed to investigate the proposed method.    
Material and Method: A schematic diagram of the proposed method is shown in Fig. 1. Thirteen 
startup pulses of a balanced SSFP 3D MR coronary angiography sequence were modified to 
acquire a low resolution 3D-NAV at each cardiac cycle immediately before the acquisition of 
segmented k-space data. Gradients with a high to low profile-order were included in the startup 
pulse sequence to perform phase encoding in the slice and phase-encode directions. The 3D-NAV 
was then measured in the coronal orientation with frequency encoding in the SI direction. The 
spatial and temporal resolution of the 3D-NAV were approximately 1(SI)×56(RL)×18(AP) mm3  
and 60 ms, respectively. The 3D-NAVs were automatically segmented to extract the heart and 
registered to the first acquired 3D-NAV to estimate the relative bulk translational SI, AP, and RL 
motions. The estimated motions were used to retrospectively correct the phase of the subsequently 
acquired k-space data. To demonstrate the feasibility of the 3D-NAV, phantom and human studies 
were performed on a 1.5T CMR scanner (Philips Achieva) using the whole-heart 3D SSFP MR 
coronary angiography sequence with the following imaging parameters: FOV = 280×280×90 mm3; 
voxel size = 1×1-2×1-2 mm3; TR/TE/α = 4.6/2.3/70° and half-Fourier acquisition with a factor of 
0.625. A body-coil and a 32 element cardiac coil array were used for the phantom and human 
studies, respectively. During the phantom experiment, scan was paused and the phantom was 
moved to create motion along three-directions. The motion was estimated using the 3D-NAV and 
corrected in the k-space data. The human study was performed on 5 healthy adult subjects (4 males, 
30±7 years) using the same MR coronary angiography sequence. The 3D-NAV was again used to 
retrospectively correct the respiratory-induced heart motion. A conventional MR coronary 
angiography image dataset (reference) was also acquired by gating and tracking the respiratory 
motion using the right-hemidiaphragmatic NAV with a 7mm gating window and 0.6 tracking 
factor. The reference, motion-corrupted, and motion-corrected images were scored by two blinded 
expert readers (1-poor, 4-excellent). Normalized vessel sharpness was calculated using Soap-
Bubble [7] and a signed-rank test was used for comparison. 
Results and Discussion: Fig. 2 shows the 
performance of the 3D-NAV in estimating 
and correcting the 3D motion in the phantom 
study. As shown, the motion-corrected image 
is very similar to the reference image. Fig. 3 
and 4 display the efficacy of the 3D-NAV in 
two healthy subjects. As shown, the quality of motion-corrected images is further improved by 
correcting the motion along the three directions. The vessel sharpness and image scores for the 
reference and motion-corrected images along the three-directions were similar (Table 1) but with 
improved respiratory gating efficiency for the 3D-NAV (100% vs. 57±13%). The mean magnitude 
of estimated motion along the SI, AP, and RL directions was 3.7±2.7, 2.3±1.9, and 1.9±0.8 mm.     
Conclusions: A novel 3D-NAV for 3D MR coronary angiography is presented. This technique 
allows for the correction of respiratory-induced heart motion along the SI, AP, and RL directions, 
thereby facilitating reduced scan time without compromising image quality. 
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Fig.1: Schematic diagram of the proposed motion 
compensation method (3D-NAV). 

Fig.2: Performance of the 3D-NAV 
on the estimation and correction of 
a 3D motion in the phantom study. 

Fig.3: Reformatted left coronary 
artery images acquired from a 

healthy   female subject. 

Method 
Vessel sharpness Visual grading 

RCA LAD RCA LAD 
Reference 0.46±0.09 0.50±0.07 3.60±0.52 3.60±0.52 
3D-NAV 0.50±0.01 0.54±0.03 3.60±0.52 3.60±0.52 
corrupted 0.39±0.24 0.33±0.19 3.10±0.57 2.80±0.79 

Table1: Normalized vessel sharpness and visual garading. 

Fig.4: Reformatted left and right 
coronary artery images acquired from 

a healthy male subject. 
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