T1 and T2* Relaxation Rates of Four Gadolinium Based Contrast Agents in Whole Human Blood at First-Pass Concentrations: Non-Linearities and their Impact on Optimizing Contrast-Enhanced MRA

Jeffrey H Maki¹, Charles S Springer, Jr.², Mark Woods^{2,3}, Sarah Bastawrous^{1,4}, Puneet Bhargava^{1,4}, Miles A Kirchin⁵, and Gregory J Wilson¹ ¹Radiology, University of Washington, Seattle, WA, United States, ²Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States, ³Chemistry, Portland State University, Portland, OR, United States, ⁴Radiology, Puget Sound VAHCS, Seattle, WA, United States, ⁵Medical Affairs, Bracco Diagnostics, Milan, Italy

Introduction Dynamic contrast-enhanced MR angiography (CE-MRA) is an increasingly established and reliable diagnostic imaging modality. Multiple technological advances have been made; most primarily related to hardware/data acquisition improvements (e.g. faster gradients, better coils, parallel imaging, view-sharing). Increasing attention, however, is being focused on the properties of the gadolinium-based contrast agent (GBCA) used, most importantly R_1 and R_2^* relaxation (1/ T_1 and 1/ T_2^*) and how to most efficaciously exploit it. Recent work examining GBCA's in human blood [1] (to be discussed) has brought to light two effects that mute the often assumed "linear" relationship between R_1 relaxation rate and GBCA concentration (the slope of which is described as the agent's "r₁"): 1) protein binding, and 2) finite kinetics for water exchange across the RBC membrane. These effects are not well understood with respect to their impact on CE-MRA. Our intent is to explore the R_1 and R_2^* relaxivities of GBCA's in whole human blood at concentrations consistent with first-pass CE-MRA, and apply the results to improving CE-MRA.

Methods Whole human blood at physiologic temperature, pH, and oxygen tension was separately doped at blood concentrations ranging from 1 -18 mM with four different GBCA's; gadoteridol (ProHance, Bracco), gadobenate (MultiHance, Bracco), gadobutrol (Gadavist, Bayer), gadofosveset (Ablavar, Lantheus). R1 and R2* were measured in whole blood and plasma (same specimen, eight hours settling) using Look Locker $[TR/TE/\Delta TI/\alpha/NSA/#TI = 1000/1.95/5.0/8^{\circ}/3/128]$ and multi-echo FFE $[TR/TE/\Delta TE/\alpha/#echoes = 200/1.5/2.4/350/32]$ sequences at 1.5 and 3.0T (Philips Achieva). The plasma R1 data for gadobenate and gadofosveset were fitted with a two component macromolecule binding model using established binding constants [1], and these fittings were incorporated into a two-site-exchange [2SX] model to predict from known quantities the GBCA concentration ([GBCA]) dependence of whole blood ${}^{f}H_{2}O R_{1}$ as the system transitions from the fast-exchange limit (FXL) to the fastexchange regime (FXR) with increasing [GBCA] [1,2]. The analytic predictions were compared to experimental blood data. Fittings of R_2^* vs. [GBCA] were performed for both blood and plasma. The combination of these datasets allows for prediction of blood ${}^{1}\text{H}_{2}\text{O}$ R₁ and R₂*, which in turn can be translated to expected vascular signal intensity for each GBCA for any physiologic situation ([Hct, [albumin]) and scanning protocol $(B_0/TR/TE/\alpha)$. Simulations were performed using MatLab (Mathworks).

<u>Findings</u> Plasma fittings conformed to the expected linear R_1 [GBCA]-dependence for the non protein-binding agents gadoteridol and gadobutrol at both field strengths. Using a two component macromolecule binding model, good nonlinear fittings were obtained for gadobenate and gadofosveset, establishing discrete "free" and "bound" r_1 values (r_{1f} and r_{1b} respectively; $r_{1b} \gg r_{1f}$). This demonstrated near complete saturation of primary albumin binding sites for [GBCA] > 0.5-1mM, with slope $\sim r_{1f}$ above this concentration. The 2SX model predicts a nonlinear [GBCA]-dependence of whole blood R₁, and nearly perfectly matches data (Fig. 1). [Note, the curve is not a fitting, rather a prediction using known quantities.] There is some Hct-dependence for all agents; approximately 5-6% decrease per 10% Hct increase over the physiologic range (Fig. 1), but only minimal dependence on [albumin] at higher [GBCA] (>5mM). Plots of R_2^* vs. blood [GBCA] were remarkably linear, but demonstrated much higher r_2^* in blood vs. plasma, ranging 15-22 (s⁻¹/mM) at 1.5T and 28-32 (s⁻¹/mM) at 3T (highest in all cases for gadofosveset). Combining the protein-binding and 2SX results with expected Hct and [albumin] values, R₁ can be predicted for any [GBCA], as can R_2^* . This gives full latitude to predict expected signal intensity for the 3D spoiled gradient (SPGR) CE-MRA sequence.

Discussion CE-MRA is an intrinsically non-linear technique. First, as demonstrated, blood R1 increases non-linearly with [GBCA] consequent to RBC finite water exchange

Figure 1. R1 vs. [Gd] at 1.5T; Gadobenate in blood. Predicted 2SX modeling demonstrating non-linearity R1 vs. [gadobenate] deviation from linear line) and predicting some Hct dependence. Experimental data for Hct 36% matches well, validating model (similar excellent matching other GBCA at both B₀).

kinetics (Fig. 1), with additional non-linearity due to interaction of some GBCA's with serum albumin. Second, the signal intensity (SI) from the SPGR sequence is non-linear with respect to R_1 , increasing as $\sim R_1^{1/2}$ [3] while simultaneously attenuated by T_2^* effects per e^{-TE R2*}. This has important implications for CE-MRA, where GBCA's are injected relatively fast (often 2mL/s), and depending on patient physiology, may achieve peak blood concentrations of >10-20 mM. Simulations of SPGR SI using our predictive R1 and R2* modeling (Figs. 2, 3) allow insight into optimal injection strategies; note from Fig. 2 a definite peak SI for each GBCA, with a loss of SI (for this particular regime) with injection rates > 0.5-0.75mmol/s. More realistically, changing the abscissa to the duration over which an approved GBCA dose is injected (Fig. 3), a better comparison between agents can be made. A final important consideration concerns time-varying intravascular signal (ie. due to decay of first pass [GBCA])

Figure 2. Predicted SI vs. injection rate for each of the four GBCA's under investigation; modeled at 3T with TR/TE = 4/1.5 ms, $\alpha = 30^{\circ}$, cardiac output = 5L/min

Figure 3. Predicted SI vs. injection duration for a single FDA approved dose for each of the four GBCA's under investigation; modeled at 3T for 80kg patient, TR/TE = 4/1.5 ms, $\alpha = 30^{\circ}$, cardiac output = 5L/min.

during acquisition). This is known to cause artifacts - primarily blurring - which can degrade quality [4, 5]. Thus maintaining a relatively constant arterial GBCA concentration over the entire acquisition period is important, and optimal CE-MRA becomes a balance between appropriate management of the injection rate (*i.e.* managing R_1 and R_2^*) and the injection duration (*i.e.* managing the bolus shape). The combination of these effects points to slower GBCA injection rates than are

References

often currently used.

1) Wilson et al. MRA Club 2012, Utrecht, NL. Paper 5.2. 2) Landis CS et al. Magn Reson Med 44:563-74 (2000).

- 3) Maki et al. Invest Radiol 33:528-537 (1998).
- 4) Maki et al. J Magn Reson Imaging 6:642-651 (1996).
- 5) Fain et al. Magn Reson Med 42:1106-16 (1999).