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Introduction   Dynamic contrast-enhanced MR angiography (CE-MRA) is an increasingly established and reliable diagnostic imaging modality.  
Multiple technological advances have been made; most primarily related to hardware/data acquisition improvements (e.g. faster gradients, better 
coils, parallel imaging, view-sharing).  Increasing attention, however, is being focused on the properties of the gadolinium-based contrast agent 
(GBCA) used, most importantly R1 and R2* relaxation (1/T1 and 1/T2*) and how to most efficaciously exploit it.  Recent work examining GBCA’s 
in human blood [1] (to be discussed) has brought to light two effects that mute the often assumed “linear” relationship between R1 relaxation rate 
and GBCA concentration (the slope of which is described as the agent’s “r1”): 1) protein binding, and 2) finite kinetics for water exchange across 
the RBC membrane.  These effects are not well understood with respect to their impact on CE-MRA.  Our intent is to explore the R1 and R2* 
relaxivities of GBCA’s in whole human blood at concentrations consistent with first-pass CE-MRA, and apply the results to improving CE-MRA.    

Methods   Whole human blood at physiologic temperature, pH, and oxygen tension was separately doped at blood concentrations ranging from 1 - 
18 mM with four different GBCA’s; gadoteridol (ProHance, Bracco), gadobenate (MultiHance, Bracco), gadobutrol (Gadavist, Bayer), 
gadofosveset (Ablavar, Lantheus).  R1 and R2* were measured in whole blood and plasma (same specimen, eight hours settling) using Look Locker  
[TR/TE/ΔTI/α/NSA/#TI = 1000/1.95/5.0/8o/3/128] and multi-echo FFE  [TR/TE/ΔTE/α/#echoes = 200/1.5/2.4/350/32] sequences at 1.5 and 3.0T 
(Philips Achieva).  The plasma R1 data for gadobenate and gadofosveset were fitted with a two component macromolecule binding model using 
established binding constants [1], and these fittings were incorporated into a two-site-exchange [2SX] model to predict from known quantities the 
GBCA concentration ([GBCA]) dependence of whole blood 1H2O R1 as the system transitions from the fast-exchange limit (FXL) to the fast-
exchange regime (FXR) with increasing [GBCA] [1,2].  The analytic predictions were compared to experimental blood data.  Fittings of R2* vs. 
[GBCA] were performed for both blood and plasma.  The combination of these datasets allows for prediction of blood 1H2O R1 and R2*, which in 
turn can be translated to expected vascular signal intensity for each GBCA for any physiologic situation ([Hct, [albumin]) and scanning protocol 
(B0/TR/TE/α).  Simulations were performed using MatLab (Mathworks). 
Findings   Plasma fittings conformed to the expected linear R1 [GBCA]-dependence for the 
non protein-binding agents gadoteridol and gadobutrol at both field strengths.  Using a two 
component macromolecule binding model, good nonlinear fittings were obtained for 
gadobenate and gadofosveset, establishing discrete “free” and “bound” r1 values (r1f and r1b 
respectively; r1b >> r1f ).  This demonstrated near complete saturation of primary albumin 
binding sites for [GBCA] > 0.5-1mM, with slope ~r1f above this concentration.  The 2SX 
model predicts a nonlinear [GBCA]-dependence of whole blood R1, and nearly perfectly 
matches data (Fig. 1).  [Note, the curve is not a fitting, rather a prediction using known 
quantities.]   There is some Hct-dependence for all agents; approximately 5-6% decrease per 
10% Hct increase over the physiologic range (Fig. 1), but only minimal dependence on 
[albumin] at higher [GBCA] (>5mM).  Plots of R2* vs. blood [GBCA] were remarkably 
linear, but demonstrated much higher r2* in blood vs. plasma, ranging 15-22 (s-1/mM) at 
1.5T and 28-32 (s-1/mM) at 3T (highest in all cases for gadofosveset).  Combining the 
protein-binding and 2SX results with expected Hct and [albumin] values, R1 can be predicted 
for any [GBCA], as can R2*.  This gives full latitude to predict expected signal intensity for 
the 3D spoiled gradient (SPGR) CE-MRA sequence.   

Discussion   CE-MRA is an intrinsically non-linear technique.  First, as demonstrated, 
blood R1 increases non-linearly with [GBCA] consequent to RBC finite water exchange 
kinetics (Fig. 1), with additional non-linearity due to interaction of some GBCA’s with serum albumin.  Second, the signal intensity (SI) from the 
SPGR sequence is non-linear with respect to R1, increasing as ~R1

1/2 [3] while simultaneously attenuated by T2* effects per e-TE R2*.  This has 
important implications for CE-MRA, where GBCA’s are injected relatively fast (often 2mL/s), and depending on patient physiology, may achieve 
peak blood concentrations of >10-20 mM.  Simulations of SPGR SI using our predictive R1 and R2* modeling (Figs. 2, 3) allow insight into optimal 
injection strategies; note from Fig. 2 a definite peak SI for each GBCA, with a loss of SI (for this particular regime) with injection rates > 0.5-
0.75mmol/s. More realistically, changing the abscissa to the duration over which an approved GBCA dose is injected (Fig. 3), a better comparison 
between agents can be made. A final important consideration concerns time-varying intravascular signal (ie. due to decay of first pass [GBCA]) 

during acquisition).  This is known to cause 
artifacts - primarily blurring – which can degrade 
quality [4, 5].  Thus maintaining a relatively 
constant arterial GBCA concentration over the 
entire acquisition period is important, and optimal 
CE-MRA becomes a balance between appropriate 
management of the injection rate (i.e. managing R1 
and R2*) and the injection duration (i.e. managing 
the bolus shape).   The combination of these effects 
points to slower GBCA injection rates than are 
often currently used. 
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Figure 3.  Predicted SI vs. injection duration for a 
single FDA approved dose for each of the four GBCA’s 
under investigation; modeled at 3T for 80kg patient, 
TR/TE = 4/1.5 ms, α = 300, cardiac output = 5L/min. 

Figure 2.  Predicted SI vs. injection rate for each of the 
four GBCA’s under investigation; modeled at 3T with 
TR/TE = 4/1.5 ms, α = 300, cardiac output = 5L/min. 
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Figure 1.  R1 vs. [Gd] at 1.5T; Gadobenate in blood.  Predicted
2SX modeling demonstrating non-linearity R1 vs. [gadobenate]
(deviation from linear line) and predicting some Hct dependence.
Experimental data for Hct 36% matches well, validating model
(similar excellent matching other GBCA at both B0). 
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