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Target Audience: Physicists and clinicians focused on developing novel MRI-based tools to characterize small nervous system structures.  
Purpose: The optic nerve (ON) is a central player not only in processing and relaying visual information from the eye, but also in in devastating 
pathological conditions such as optic neuritis, multiple sclerosis (MS) and optic nerve head drusen (ONHD). As with other central nervous system 
structures, pathology has shown that the optic nerve can undergo many changes in the course of disease not limited to: inflammation, atrophy, axonal 
congestion, yet many MRI-based tools have struggled to characterize the extent of the optic nerve’s involvement in central nervous system (CNS) 
diseases.  Thus, our purpose is to develop tools to automatically quantify the location and volumetrics of the optic nerve which promises to provide 
integration of multi-modal imaging data.  We hypothesize that this will increase sensitivity and specificity of pathology assessments relative to 
coarse, manual region of interest approaches. Additionally manual segmentation struggles significantly in the optic nerve when pathology is present 
or in the later stages of optic nerve damage.  While multi-atlas segmentation promises a robust and model-free approach to segment medical images 
from exemplar images for brain structures, extrapolation to smaller structures of the human anatomy have largely been unexplored. Our purpose is to 
extend and evaluate multi-atlas labeling for the segmentation of the ON based on high-resolution T2-weighted MRI of the optic nerve. 
Theory: Non-rigid registration is performed on Regions of Interests (ROIs) localized for the target and atlas images using the ON centroid results 
from the initial rigid registration. Non-Local STAPLE (NLS) for label fusion provides a novel approach for accounting for consistent registration 
errors and bias within the traditional STAPLE estimation framework. In order to accomplish this, NLS incorporates the theory of non-local means 
[1]. This approach deconstructs image volumes into a collection of small volumetric patches and the similarity (or correspondence) is quantified in 
order to learn information about the underlying image structure.  
Methods: We performed T2-weighted VISTA (3D Spin Echo with asymmetric k-space turbo spin echo readout, TR/TE = 4s/400ms, nominal 
resolution = 0.6mm3 isotropic, 50 axial slices, SENSE = 2, body coil excitation, 32 channel receive coil, and total scan time = 4.3 min) 3T (Philips 
Medical Systems) MRI of the optic nerves from the globe to the chiasm in 36 subjects (32 controls, 4 MS patients and 2 ONHD patients). Manual 
segmentation was performed using the MIPAV software package for the full length of the optic nerve on 10 randomly selected control datasets to 
obtain 10 pairs of images and labels (i.e., the “atlases”). The remaining 26 datasets were labeled using the NLS segmentation algorithm based on the 
10 atlases [2]. Briefly, pairwise non-rigid registration was performed for all atlas images and targets using the VABRA module in JIST [3].  All the 
atlas labels were transformed to the coordinate space of each target with nearest neighbour interpolation. Non-local statistical fusion was used to 
reconcile inconsistencies in labels and form a single segmentation estimate. To evaluate this automated segmentation method, we manually 
segmented the full optic nerve volumes on 4 of the automatically segmented images (1 control, 1 MS patient, and 2 ONHD patients) and 100 
randomly selected coronal slices from the remaining 26 datasets. We report the difference in CSA on coronal sections, the Hausdorff distance 
(maximum surface distance) for each pair of manual and automatic segmented slice (within slices), and Dice Similarity Coefficient (DSC). 

Results and Discussion: For the 4 fully segmented subjects (8 optic nerves, Figure 1), the mean differences in the CSA for the manual and 
automatic pairs of volumes were 1.4, 1.5, 6.2 and 2.6 mm2 respectively. The mean DSCs were 0.72, 0.76, 0.70 and 0.61 respectively. The Hausdorff 
distances were 3.8, 4.89, 1.54 and 2.19 mm respectively and the mean surface distances were 0.5237, 0.4847, 0.5021 and 0.5590 mm. For the 100 
random slices, the mean Hausdorff distance between the corresponding pairs was 1.24 mm and DSC was 0.78. The mean difference in CSA over 
these 100 slices was 5.58 mm2 for the left optic nerve and 4.21 mm2 for the right optic nerve. We note that the accuracy of manual segmentation of 
randomly selected slices is lower given reduced 3D context which would explain the increased disparity in the control slices versus the 
comprehensive segmentations.  

Conclusions: Multi-atlas segmentation provides a robust approach to obtain volumetric information even in patients where significant atrophy is 
present (ONHD patients) and when inflammation is easily 
appreciated (MS patients) using atlases based only on 
healthy controls. The automated segmentations could be 
used to provide analysis context (i.e., navigation), 
volumetric assessment, or enable regional nerve 
characterization (i.e., localize changes). We note that the 
current assessment approach occasionally results in large 
maximal distances when considering only within-slice 
error (spikes in Figure 1). This is a result of minor failures 
in the automatic segmentations which could be resolved 
with more stringent 3-D consistency (i.e., Markov Random 
Field regularization) or tubular structure enforcement [4]. 
We further propose the opportunity to obtain high-fidelity 
volumetric analysis in patient populations will provide for 
the first time a routine clinical method to correlate 
ophthalmological findings with radiological imaging, a 
task that to date, has not been offered in the clinical 
assessment of patients with optic nerve pathology.   
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Figure 1. Comparison of manual and automated segmentation of the optic 
nerve on four subjects. The right optic nerve is shown in red and the left in 
green in the top two plots. The lower plots show the maximum slice-wise 
surface distance between the respective automatic and manual segmentations.  
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