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Introduction: Language deficits are widely reported in frontotemporal dementia (FTD), including non-fluent primary progressive 
aphasia (naPPA), semantic-variant primary progressive aphasia (svPPA) behavioral variant FTD (bvFTD). We hypothesize that these 
deficits are due to disruption of a large-scale neural network involving both language and executive resources. Here we use multi-modal 
MRI and sparse statistical methods to evaluate whether imaging of white matter (WM) with diffusion MRI enhances prediction of the 
neuroanatomic basis for their deficit when combined with cortical thickness derived from T1 MRI.  
Data acquisition: A total of 69 subjects participated in the study, including 54 patients with naPPA, bvFTD or svPPA from the Penn 
FTD Center who were diagnosed with an FTD-spectrum disease according to published consensus criteria, and 15 healthy seniors 
matched to the patient group in age and education. Verbal fluency was assessed with a one-minute administration of a category 
(Animals) fluency test. Naming was assessed with the Boston Naming Test. MR images were acquired on a 3T Siemens scanner and 
consisted of an MPRAGE T1 sequence with 1mm isotropic voxels, and a diffusion-weighted sequence consisting of 4 images with b = 0 
s/mm2, followed by 30 images at b = 1000 s / mm^2, 2.2 mm isotropic voxels. The MRI images 
are processed with the PipeDream neuroimaging toolkit 
http://picsl.upenn.edu/ANTS/pipedream.php, which implements multi-modal spatial normalization 
pipelines powered by ANTs [1] and Camino [2]. To compute cortical thickness, the T1 brain 
image is first segmented into three tissues using Atropos. The gray and white matter probability 
maps are then input to DiReCT [3]. The diffusion images are skull-stripped and diffusion tensors 
are calculated using Camino. Both the tensor and the T1 images are normalized to a common 
template space.  
Eigenanatomy brain parcellation: We use 
Eigenanatomy [4] to parcellate the cerebrum into 
regions of interest based upon the variation in the 
subject population. Like Principal Component 
Analysis (PCA), Eigenanatomy finds a low-
dimensional representation of the very high-dimensional data matrix containing all voxel data for 
all subjects. An innovation of Eigenanatomy is that the components are sparse, unsigned and 
spatially clustered, resulting in linearly weighted regions of interest (ROIs) that capture variance 
in the data but are also spatially specific. We compute 
independent Eigenanatomy for cortex (GM, excluding 
occipital lobe, where segmentation is less reliable) and WM. 
We set the number of regions to 30 for both gray and 
white matter. The sparsity is set to 1/30 for approximate 
whole-brain coverage, no ROI can exceed that fraction of 
the total volume of the GM or WM. The algorithm 
maximizes the variance in the data set that is explained by 
the Eigenanatomy, approximately 85% for both the GM 
and WM images. The variance explained is stable as we 
increase the number of components. 
Correlation with cognition: We apply model selection 
techniques to search for a subset of the ROIs that best correlate 
with language performance. Specifically, we use the weighted-average FA or 
cortical thickness over each ROI as predictors of language in a linear regression model. 
The leaps package in R [5] provides a method to test and rank subsets of a linear 
regression model according to the Bayesian Information Criterion (BIC). The complexity of a subset search increases exponentially with 
the number predictors; we search for models with 8 or fewer predictor. Separately, we run leaps using only GM or only WM regions.  
Results: The BIC and R^2 for the GM, WM, and combined models with 3 predictors are shown in table 1. Combined models are not 
forced to include GM and WM, but the best models returned by leaps feature both kinds of predictors, and fit the data better (evidenced 
by lower BIC and higher R^2) than unimodal models. The relative performance of GM, WM and combined models is similar with more 
than 3 predictors. For BNT, GM predictors can produce a model that is almost as efficient as the combined model. For Animals, the 
difference in R^2 is larger when using a both modalities. The same WM ROI (fig. 1, blue), in the left inferior longitudinal fasciculus, is 
selected for both models. For BNT, the green cortical regions are selected, one in the left anterior temporal lobe, the other in the right 
frontal lobe. For Animals, the pink cortical regions include the left temporal lobe and the right insula / orbitofrontal cortex. The 
performance of the combined model using the regions shown in fig. 1 is shown in the plots in fig. 2. 
Conclusions: Eigenanatomy, combined with linear regression, provides a powerful, data-driven method for integrating GM and WM 
modalities to identify large-scale neural networks supporting language and executive resources during performance of language tests in 
FTD. Eigenanatomy is available in ANTs (http://picsl.upenn.edu/ANTS). 
References: 1. Avants et al, Medical image analysis 12:26-413, 2008. 2. Cook et al, Proc ISMRM p. 2759, 2006. 3. Das et al, 
Neuroimage 45:867-879, 2009.  4. Avants et al, MICCAI 2012 p. 206-213. 5. Lumley and Miller, R package leaps version 2.9. 

Test GM WM Combined 

Animals 0.51 0.48 0.59 

BNT 0.67 0.52 0.69 

Fig 1: regions correlated with 
naming and fluency. 

Fig 2: Fitted vs actual cognitive scores 

Table 1: R^2 for different models 
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