AGE-DEPENDENT CHANGES IN WHITE-MATTER AND GRAY MATTER BRAIN T1RHO VALUES

Richard Watts¹, Trevor Andrews^{1,2}, Scott Hipko¹, Jay Gonyea¹, and Christopher G. Filippi^{1,3} ¹Department of Radiology, University of Vermont College of Medicine, Burlington, VT, United States, ²Philips Healthcare, Cleveland, OH, United States, ³Department of Radiology, Columbia University Medical Center, New York, NY, United States

Purpose

To determine if quantitative $T_{1\rho}$ MRI is sensitive to the processes of normal aging in the human brain, and to provide normative values of $T_{1\rho}$ in white matter (WM) and cortical gray matter (GM). Since $T_{1\rho}$ is thought to be sensitive to the complex macromolecular content of tissue, it may have important applications to neurodegenerative disease. <u>Methods</u>

41 subjects (23 males, 18 females) aged 18-76 with no history of neurological disease were recruited in this IRB-approved study. Data was acquired using a Philips 3T Achieva TX scanner and an 8-channel head coil. Whole-brain $T_{1\rho}$ -weighted images were acquired using a fluid attenuated variable flip angle 3D turbo spin echo technique (TE/TR/TI=20/4800/1650ms, matrix size 140×140×100, spatial resolution $1.8 \times 1.8 \times 1.8$ mm³). Images were acquired with a spin lock frequency of 500Hz and spin lock durations of 0, 20, 40, 60, 80 and 100ms. Each T₁₀ map was calculated based on a single exponential fit to the coregistered T_{10} -weighted images. The T_{10} map was then itself coregistered to a T₁-weighted anatomical scan. Using unified segmentation¹ (SPM8) of the T_1 -weighted image, the $T_{1\rho}$ maps were segmented into WM and GM and spatially normalized to MNI space. Major WM tracts were defined using the JHU atlas², while cortical GM and juxtacortical WM were defined by an intersection of the Harvard-Oxford cortical atlas (dilated by 5mm) with the subject-specific GM and WM masks respectively.

Results

The new technique produced high SNR whole-brain $T_{1\rho}$ maps with an acceptable scan duration of ~14 minutes (Figure 1). The maps

Figure 1. T_{10} map and T2-FLAIR from a 75 year old male.

demonstrate excellent WM-GM contrast, with major WM tracts such as the corticospinal tract (left= 86.1 ± 2.1 ms, right= 85.6 ± 1.9 ms, mean±std dev) and fornix major (84.4 ± 2.5 ms) showing high T_{1p} values in all subjects compared to other tracts and juxtacortical WM (75.6 ± 1.4 ms). Cortical GM showed a significant negative correlation between T_{1p} and age (r=-0.599, p<0.001), major WM tracts demostrated a positive correlation (r=0.527, p<0.001), while

juxtacortical WM showed no significant correlation with age (r=0.035, p=0.830) (see Figure 2) Discussion and Conclusions Since T_{1p} is sensitive to macromolecular content of tissue, it may provide an important biomarker of changes associated with many neurodegenerative diseases, including Alzheimer's disease⁴ and multiple sclerosis. We have demonstrated that $T_{1\rho}$ is sensitive to the

Figure 2. T₁₀ variation with age in cortical GM, major WM tracts and juxtacortical WM. Lines represent 95% CI.

processes of normal aging, suggesting that it may also be sensitive to pathologic changes. This is the first systematic study of the variation of T_{1p} over adulthood using a novel approach which provides whole-brain coverage and excellent fluid suppression and provides important normative data for future studies of disease pathology.

References

1. Ashburner J, Friston KJ. Unified segmentation. *NeuroImage*. Jul 1 2005;26(3):839-851. 2. Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. *NeuroImage*. Jul 1 2007;36(3):630-644. 3. Borthakur A, Wheaton AJ, Gougoutas AJ, et al. In vivo measurement of T1rho dispersion in the human brain at 1.5 tesla. *Journal of Magnetic Resonance Imaging*. Apr 2004;19(4):403-409. 4. Borthakur A, Sochor M, Davatzikos C, Trojanowski JQ, Clark CM. T1rho MRI of Alzheimer's disease. *NeuroImage*. Jul 15 2008;41(4):1199-1205.