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Introduction: Imaging of the brain's micro-structures became extremely popular with the development of techniques that can quantify features 
such as the axon diameter distribution through diffusion imaging 1 or the myelin water fraction through relaxometry 2. The ability of MRI to detect 
such small features of the tissue turns MRI into a virtual microscope. However, MRI seems to fall short in detecting other features of tissue micro-
structure such as the cellular architecture (cortical layers). While the imaging of such micro-structures can be resolved by increasing the image 
resolution to 200-300 microns, such conditions can only be met at high field MRI with lengthy acquisition times. Recently, inversion recovery MRI 
was shown to have high contrast and distinct T1 range for different layers of the cortex 3. However, the implementation of this method is limited 
due to the partial volume artifacts in conventional imaging setup. In this work we introduce a post processing method which resolves the partial 
volume problem of cortical layer imaging. Using statistical learning and the IR data we compute for each voxel the sub-voxel layer composition. In 
addition, we use the sub-voxel composition to reconstruct enhanced resolution images of the layers.    
 

Methods: (1) Acquisition: Subjects (aged 25-35) underwent MRI in a 3T scanner (GE). The protocol 
included IR-FSE acquired at resolution of 0.43x0.43x1.5 mm3 covering the entire hemisphere in the 
sagittal plane. The inversion time (TI) varied from 230 to 1380 ms.  
(2) Image analysis: From the IR data set, T1 maps were calculated. Histogram of the T1 values 
revealed a multi-class pattern within the range of gray matter values (Fig. 1).  
(3) Statistical Learning: The training set is calculated by fitting a Gaussian mixture model to the T1 
data (Fig.1). For each class, we sampled the IR data for voxels in which the posterior distribution is 
high (>0.4). Using this training set, we fit a classification model (logistic regression) that predicts 
(based on principal component analysis (PCA) of the IR data) the probability that a new voxel 
belongs to each of the classes. This analysis results in probability maps for each class (Fig. 2). 
(4) Resolution enhancement: The sub-voxel composition, reflected by the classes' probability maps, 
is used to enhance the image resolution by solving a regularized optimization problem in which 
each voxel is divided to 4 sub-voxels such that their mean value has minimum deviation from the 
original voxel value. The regularization function used is total variation, which preserves the edges in the image. The optimization problem is solved 
by using the recently introduced FISTA algorithm 4. 
 

Results & Discussion: Using the classification model, we 
computed probability maps of each T1 class revealing a layer 
pattern across the cortex (Fig. 2). Such analysis overcomes the 
partial volume effects as it computes the sub-voxel composition 
based on the acquired data without imposing a single-
component model on the data. Using the composition 
probability for each class in each voxel, and by calculating the  
enhanced resolution images, it is possible to minimize the partial 
volume artifact. Indeed, such analysis enables to reveal layer 
class that was masked by other more prominent classes in the same voxel. Example for that is shown in Fig. 3, where the enhanced resolution 
probability majority vote (hard classification) image (Fig. 3C) identifies layers (class 2 and 4) that could not be resolved in the original resolution (Fig. 
3B). In addition, the enhanced resolution images have sufficient information to allow the visualization of the border between different cortical 
regions by inspecting the change in layer composition. Fig. 4 shows an example for such border definition, where the width of layer class 1 and 2 
(see Figs. 4B and 4C) change at the border between the two adjacent regions (as predicated by the Free-Surfer cortical segmentation, Fig. 4A). 
 

Conclusions: IR MRI enables robust classification and quantification of different layers within the cortex using a statistical learning approach. The 
layer class probability maps imply on the sub-voxel composition, which can be used to compute enhanced resolution images of cortical layer 
classes. Using the statistical learning approach described here, it is possible to explore and characterize the in-vivo cortical layer composition while 
minimizing partial volume artifacts without the need for extreme resolution acquisition. 
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Fig. 1 – Histogram of T1 values of the cortex 

Fig. 2 – The different class probability maps. Color scale represents the probability of each class. 

  
  Fig. 3 – Revealing layer composition of the cortex Fig. 4 – Identifying the border between cortical regions 
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