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INTRODUCTION    
Resting-state functional connectivity has the potential to characterize normal development and aging in brain networks.  Multivariate 
pattern classification and prediction offers an alternative to standard univariate analysis techniques, and has recently been applied in 
MR imaging using support vector machines (SVM) [1]. 
 
Previous work using multivariate techniques to characterize brain maturity from resting-state scans [2,3] either did not look at an 
extended age range, or combined disparate data sets from multiple sites.  This study extends the investigation of predicting brain age 
using resting-state scans to the entire lifespan, using a large matched sample from one site. 
 
METHODS  Data were acquired on a 3.0 T GE scanner.  T2*-weighted data was acquired using a spiral-in sequence 
(TR/TE/FA/FOV=2s/30ms/90/22cm, 64x64 matrix, 3mm slice thickness, 40 slices).  Anatomical T1 overlays matching the prescription of 
the functional data and whole-brain T1 SPGRs were also collected.  188 subjects in total were scanned: <18 years old (n = 73, 16 F), 
18-50 years old (n = 38, 13 F),  > 50 years old, (n = 77, 34 F).  Subjects were instructed to keep their eyes open using a fixation cross 
during the resting state acquisition (8 min duration, 240 timeframes). 
  
All data was preprocessed using SPM8, including slice timing correction and realignment, anatomical coregistration and segmentation, 
normalization to MNI space, and spatial smoothing (5mm FWHM). Nuisance regressors (white matter, CSF, and motion) were removed 
prior to band-pass filtering. Timecourses were extracted using the 160 ROIs defined in [1], and correlation matrices were formed. 
 
Support vector machine learning was performed using the 3dsvm toolbox [1] in AFNI [4], using the correlation matrices for each subject, 
labeled by age.  Binary SVM classification was performed using a linear kernel and multistate classification, using young (<18), middle 
(18-50), and old age (>50) as labels.  Support vector regression was performed using a linear kernel and epsilon width of 0.1. Leave-
one-out cross-validation (LOOCV) was used to calculate classification accuracies and predicted values.  Regression model weights 
were averaged across all LOOCV permutations, absolute value taken, and summed for 
all ROIs. 
 
RESULTS SVM multistate classification results in 87% accuracy in classifying 
young vs. old, 75% for middle vs. old, and 68% for young vs. middle. 
  
Support vector regression resulted in a predicted brain age that tracked well with 
chronological age (see Figure 1).  The top weights in the regression model were located 
in the cingulo-opercular and default mode networks (Table 1 and Figure 2).   

 

            
 
 
 
DISCUSSION  
Thalamic and default mode network nodes were implicated in being important in the aging process, agreeing with previous studies 
[2,3].  This work demonstrates that aging can be investigated across the lifespan, which can form the basis for examining age-
dependent pathologies, such as autism or Alzheimer’s Disease. Alternate kernels and feature selection will also be investigated. 
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MNI coordinates Relative   
x y z weight Label Network 

11 -12 6 1 thalamus cingulo-opercular 
-12 -3 13 0.9 thalamus cingulo-opercular 
-8 -41 3 0.87 Posterior cingulate default 

-12 -12 6 0.86 thalamus cingulo-opercular 
-25 51 27 0.84 aPFC default 
-55 -44 30 0.82 parietal cingulo-opercular 
0 51 32 0.81 mPFC default 

-16 -76 33 0.8 occipital occipital 
-29 -75 28 0.76 occipital occipital 
1 -26 31 0.74 Posterior cingulate default 

Figure 2. Summed absolute regression weights for each ROI, overlaid on standard MNI anatomy.      
The size of each circle is scaled to the maximum weight, and color corresponds to its network identity, 
defined in [1]. MNI z coordinate is displayed for each slice. 

Figure 1. Chronological age vs predicted brain 
maturity.  Maturity values are normalized to 
predicted value at 40 years of age.

Table 1. Top ten nodes having the highest summed absolute 
average weights in the regression model. 
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