Two-Dimensional J-Resolved LASER Spectroscopy of Human Brain at 3T

Meijin Lin¹, Anand Kumar¹, and Shaolin Yang^{1,2}

¹Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States, ²Department of Radiology, University of Illinois at Chicago, Chicago, IL,

United States

Introduction

The limited radiofrequency (RF) bandwidths (BWs) not only cause chemical shift displacement error (CSDE) but also lead to spatially dependent evolution of J-coupling, which results in additional J-refocused peaks in two-dimensional (2D) J-resolved spectroscopy (JPRESS) (1,2). For a pair of coupled spins with a large chemical shift difference, one of the coupled spin pair may not undergo the 180° refocusing pulses due to the finite BWs of the RF pulses in the voxel selected for its J-coupled spin partner. Therefore J-coupling will be refocused instead of evolving during the echo time (TE), which leads to additional so-called J-refocused peaks and reduces the intensities of intended J-resolved peaks and thus impairs spectral quantification. The above issues can be solved or mitigated using adiabatic RF pulses (3,4). Adiabatic RF pulses offer large BWs and produce a uniform flip angle despite variation in B₁. In this work, a J-resolved spectroscopy sequence using localization by adiabatic selective refocusing (LASER) (4), named as "J-resolved LASER", was proposed to address the issues of conventional JPRESS such as the CSDE, spatially dependent J-evolution, and sensitivity to B₁ inhomogeneity. $RF-FM 90° \sqrt{AFP} \sqrt{AFP} \sqrt{AFP} \sqrt{AFP} = \sqrt{AFP} = \sqrt{AFP}$

Methods

Fig. 1 shows the diagram of J-resolved LASER pulse sequence. To build the second dimension, the first half of the incremental period t_1 was inserted between the last pair of AFP pulses in the 2D J-resolved LASER sequence.

All experiments were performed on a Philips Achieva 3T whole body scanner. Phantom experiments on NAA and in vivo experiments on the brain of healthy volunteers were performed to compare the conventional JPRESS and J-resolved LASER sequences. The adiabatic pulse used in J-resolved LASER sequence is 5.3 ms long with a BW of 4748 Hz. A $30\times30\times30$ mm³ voxel was placed at the center of the phantom. All data were acquired with VAPOR (variable pulse power and optimized relaxation delays) scheme for water suppression. TR = 2000 ms, number of averages = 8 for each t_1 step, 1024×32 points with $\Delta t_1 = 10$ ms, spectral widths = 2000 Hz × 100 Hz in the F₂ × F₁ dimensions, total scan time = 8 mins and 32 s. The data was zero-filled to 2048× 128 before Fourier transformation.

Results and discussion

The experiments on the NAA phantom (Fig. 2) show the additional J-refocused peaks in the JPRESS spectrum while these additional artifactual peaks were significantly reduced in the J-resolved LASER spectrum. The additional peaks appeared because the coupled spins did not equally undergo the 180° refocusing pulses in the JPRESS sequence due to the limited BWs of the pulses compared with the significant chemical shift difference between the coupled spins.

Fig. 3 shows two spectra acquired from a voxel encompassing the parieto-occipital junction of a healthy volunteer using the two 2D J-resolved spectroscopy sequences. The CSDEs in the form of extracranial lipid signal were reduced evidently in the J-resolved LASER spectrum compared to the JPRESS spectrum. Therefore, the outer volume suppression (OVS) is possibly not necessary in J-resolved LASER to suppress the signal from the outside of voxel. Decrease in residual water and out-of-volume lipid/MM signals will benefit the spectral quantification, especially for those metabolites with resonances close to the strong "phase-twisted" water or lipid peaks.

The suppression of the sensitivity to RF field inhomogeneity, chemical shift artifacts and additional J-refocused artifactual peaks make the proposed J-resolved LASER spectroscopy promising in the in vivo application for more reliable and accurate quantification of metabolites.

Fig. 2. 2D spectra of NAA at 2.20-2.75 ppm using the JPRESS (left) and J-rosolved LASER (right) sequences. The red solid arrows mark the additional J-refocused peaks and the white dashed arrows the intended J-resolved peaks. There are eight additional peaks due to strong J-coupling effects in both spectra, marked by the white dashed boxes.

Fig. 3. 2D spectra acquired from a voxel encompassing the parieto-occipital junction of a healthy volunteer using JPRESS (top), and J-resolved LASER (bottom) sequences. The lipid signal from the scalp is clearly seen in the conventional JPRESS spectrum but barely observed in the J-resolved LASER spectrum. The green arrows mark the phase-twisted lineshapes.

Reference

1. Edden RAE et al., Magn Reson Med 2011;65:1509-1514. 2. Yablonskiy DA et al., Magn Reson Med 1998;39:169-178. 3. de Graaf RA et al., J Magn Reson B 1995;106:245-252. 4. Garwood M et al., J Magn Reson 2001;153:155-177.