Long-time-scale Hyperpolarized ³He Diffusion MRI is More Sensitive than Short-time-scale ³He Diffusion MRI for Detecting COPD

Chengbo Wang^{1,2}, John P Mugler, III^{2,3}, Eduard E de Lange², G Wilson Miller², and Talissa A Altes²

¹Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, China, ²Radiology and Medical Imaging, University of Virginia,

CHARLOTTESVLE, Virginia, United States, ³Biomedical Engineering, University of Virginia, CHARLOTTESVLE, Virginia, United States

Target Audience: Researchers in the hyperpolarized noble-gas MRI field and chest radiologists.

Purpose: Hyperpolarized (HP) ³He diffusion MRI is sensitive to emphysematous changes from the breakdown of alveolar walls and associated structures (1). It has been investigated at two different time scales: short-time-scale (STS) (on the order of ms) (1) and long-time-scale (LTS) (on the order of seconds) (2,3). Studies suggest that STS ³He diffusion detects information at the alveolar level, while LTS ³He diffusion detects information at the acinar or higher levels. Some researchers hypothesized that LTS ³He diffusion is more sensitive to early emphysema than STS ³He diffusion (2,3). A hybrid MRI pulse sequence developed by Wang et al measures both STS and LTS ³He diffusion during a single breath-hold to allow a direct pixel-by-pixel comparison (4). The purpose of this work was to compare the ability of these two techniques to distinguish healthy subjects from patients with COPD.

Methods: HP ³He diffusion MRI was performed in 24 healthy subjects who never smoked (11M, 13F; age: 57.0 ± 7.7 yrs; FEV₁%predicted: $100\% \pm 11\%$) and 15 patients with COPD (7M, 8F; age: 63.6 ± 5.0 yrs; FEV₁%predicted: $66\% \pm 20\%$) using a 1.5T commercial scanner (Sonata, Siemens) modified by the addition of a broadband-imaging package and a flexible RF coil (Clinical MR Solutions, Brookfield, WI). ³He was polarized to ~30% by the collisional spin-exchange technique using a commercial system (Model 9600, MITI). MR data was collected during a breath hold lasting no longer than 15 s. A dose of 400-700 ml of ³He was diluted with N₂ to 1/3 of the subject's FVC and inhaled by the subject. Axial multi-slice STS and LTS ADC maps were measured by using a hybrid stimulated-echo based pulse sequence, as described in Ref. (4). For STS, diffusion time *t* = 1 ms, *b* = 1.6 s/cm²; for LTS, *t* = 1.5 s, *b* = 59.2 s/cm². The ADC data from each pixel of all subjects in the same group were put together to calculate histograms. A receiver operating characteristic (ROC) analysis was performed to find the optimum threshold, and the specificity and sensitivity for each method.

Results: The ADC maps were homogenous for most healthy subjects with mean ADC values of 0.238 ± 0.022 cm²/s for STS and 0.0187 ± 0.0035 cm²/s for LTS. As expected, for patients with COPD, both STS and LTS ADC increased, with the STS ADC mean of 0.405 ± 0.114 cm²/s (increase of 70.0%, *P*<0.001) and the LTS ADC mean of 0.0407 ± 0.0065 cm²/s (increase of 117.4%, *P*<0.001). Figure 1 presents representative STS and LTS ADC maps from a healthy subject and a patient with COPD.

Putting all of the pixel-wise ADC data from each subject together shows a clustering of the ADC values for healthy subjects and a markedly increased number of elevated ADC values in COPD patients, Fig. 2a. The greater separation of the histogram peaks for the LTS data (Fig. 2c vs. 2b) suggests that the LTS ADC may be more sensitive than the STS ADC to the changes of COPD. Table 1 presents the results of the ROC analysis. The LTS ADC had a greater area under the ROC curve (0.920) than the STS ADC (0.849); again suggesting that LTS ADC is more sensitive to emphysema than STS ADC.

Conclusion: The LTS ³He ADC appears to be more sensitive to the changes in the lung of COPD than the STS ³He ADC.

 Table 1. Results of ROC analysis

	Area under ROC	Optimum threshold (cm ² /s)	Sensitivity	Specificity
STS ADC	0.849	0.244	0.782	0.782
LTS ADC	0.920	0.0192	0.852	0.852

Acknowledgements: The Flight Attendant Medical Research Institute, grant numbers R01 HL105586 and R01 HL079077 from the National Heart, Lung and Blood Institute, and Siemens Medical Solutions.

References:

- 2. Woods JC, Yablonskiy DA, Chino K, et al. Magnetization tagging decay to measure long-range (3)He diffusion in healthy and emphysematous canine lungs. Magn Reson Med 2004;51(5):1002-1008.
- 3. Wang C, Miller GW, Altes TA, et al. Time dependence of 3He diffusion in the human lung: measurement in the long-time regime using stimulated echoes. Magn Reson Med 2006;56(2):296-309.
- 4. Wang C, Altes TA, Mugler JP, 3rd, et al. Assessment of the lung microstructure in patients with asthma using hyperpolarized 3He diffusion MRI at two time scales: Comparison with healthy subjects and patients with COPD. J Magn Reson Imaging 2008;28(1):80-88.

^{1.} Chen XJ, Hedlund LW, Moller HE, et al. Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc Natl Acad Sci U S A 2000;97(21):11478-11481.