DIFFUSION-WEIGHTED HYPERPOLARIZED HELIUM-3 AND XENON-129 MAGNETIC RESONANCE IMAGING OF ELDERLY NEVER-SMOKERS AND EX-SMOKERS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Miranda Kirby¹, Sarah Svenningsen¹, Alexei Ouriadov¹, Giles E Santyr¹, David G McCormack², and Grace Parraga¹

¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada, ²Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Target Audience: Scientists and clinicians who are interested in investigating lung disease using hyperpolarized noble gas magnetic resonance imaging (MRI) to non-invasively measure

disease morphological and functional changes to gain a better understanding of disease pathophysiology. Purpose: Hyperpolarized helium-3 (³He) MRI provides a way to regionally quantify lung structure and function in chronic obstructive pulmonary disease (COPD). Unfortunately, the limited

access and the high cost of ³He gas has presented serious roadblocks for clinical translation. With recent developments in hyperpolarized xenon-129 (¹²⁹Xe) polarization technology, ¹¹ MRI can now be used to investigate pulmoary disease and provides some distinct differences and advantages compared to ³He MRI. In healthy volunteers and COPD ex-smokers, we previously detected significant and strong correlations between ³He ADC and ¹²⁹Xe ADC with a b-value of 12s/cm², however, it is unclear which b-value associated with ¹²⁹Xe ADC probes similar spatial scales as ³He ADC. In addition, it is important to determine which b-value associated with ¹²⁹Xe ADC provides the greatest relationship with standard measures of lung function. In this investigation, our objective was to compare ³He ADC and ¹²⁹Xe ADC with a b-value of 12s/cm², 20s/cm² and 30s/cm² in the same healthy volunteers and COPD ex-smokers previously evaluated.2

Materials

Subjects: All subjects provided written informed consent to a study protocol approved by the local research ethics board and Health Canada. Ex-smokers with a clinical diagnosis of COPD between the ages of 50-85 and a smoking history of ≥10 pack-years were enrolled. Healthy never-smokers were also enrolled who had no history of previous chronic or current respiratory disease. Spirometry and plethysmography were performed and the forced expiratory volume in 1s (FEV₁), functional residual capacity (FRC) and diffusing capacity of carbon monoxide (D_{LCO}) were measured according to the American Thoracic Society guidelines.

Image Acquisition: MRI was performed on a whole body 3.0 Tesla Discovery 750MR (General Electric Health Care, Milwaukee, WI) with broadband imaging capability as previously described¹. For ³He MRI, a polarizer system (HeliSpinTM) was used to polarize ³He gas. For ³He MRI diffusion-weighted imaging, images were obtained using a 2D fast gradient-echo method (FGRE). Two interleaved images (14s total data acquisition, TR/TE/flip angle=7.6 ms/3.7 ms/8°, FOV=40x40cm, matrix 128x128, 7 slices, 30 mm slice thickness), with and without additional diffusion sensitization (G=1.94 G/cm, rise and fall time=0.5 ms, gradient duration =0.46ms, Δ =0.46ms, b=1.6 s/cm²), were acquired. For ¹²⁹Xe MRI a commercial turn-key polarizer model XEBox-E10 (Xemed LLC, New Hampshire, USA) was used. For diffusion-weighted imaging, images were obtained using a 2D FGR. Two interleaved images (16s total data acquisition, TE/TR/flip angle =10 ms/13.5 ms/9°, bandwidth=31.25 kHz, FOV=40x40 cm, matrix 128x80, 7 slices, 30 mm slice thickness, 0 gap), with and without additional diffusion sensitization with a gradient amplitude adjusted to b=12s/cm², 20s/cm² and 30s/cm² (gradient rise and fall time=0.5 ms, gradient separation=2 ms, gradient duration=2.0 ms, diffusion time=5 ms).

Image Analysis: ³He and ¹²⁹Xe ADC maps were generated using in-house software. *Statistical Analysis:* The relationship between ³He and ¹²⁹Xe ADC and pulmonary function measurements were determined using Pearson correlation coefficients (r) using GraphPad Prism version 4.00.

Results: Table 1 shows subject demographics, pulmonary function measurements and **Results:** Table 1 shows subject defining apriles, particular function measurements and 129 Xe ADC measurements for four healthy never-smokers and four COPD ex-smokers. Figure 1A shows the central coronal ³He and 129 Xe MRI ADC maps for a representative COPD ex-smoker. For all subjects, ³He ADC was significantly correlated with 129 Xe ADC_{b=12} (r=.98, p<.0001) and 129 Xe ADC_{b=20} (r=.91, p=.002) but not ^{129}Xe ADC_{b=30} (r=.60, p=.11) as shown in Figure 1. Table 2 shows Pearson correlations for ³He ADC and ^{129}Xe ADC with pulmonary function measurements. There were significant correlations for ³He ADC with FEV₁ (r=-.72, =0.04), FRC (r=-.81, p=.01) and D_{LCO} (r=-1.00, p<.0001); ¹²⁹Xe ADC_{b=12} was also significantly (1-3), p-01 and D_{LCO} (1-7.0), p-0.007), AC AD_{E12} was also significantly correlated with FEV₁ (re-.7), =0.047), FRC (r=-.72, p=.046) and D_{LCO} (re-.98, p<.0001); ¹²⁹Xe ADC_{b=20} was only significantly correlated with D_{LCO} (re-.89, p=.003); Discussion: We evaluated ³He ADC and ¹²⁹Xe ADC with a b-value of $12s/cm^2$,

20s/cm² and 30s/cm² in the same healthy volunteers and COPD ex-smokers previously evaluated,² and report that ¹²⁹Xe ADC_{b=12} and ²⁹Xe ADC_{b=20} were significantly correlated with ³He ADC and with standard measures of pulmonary function. The strong correlations between ³He ADC with ¹²⁹Xe ADC_{b=12} and ADC_{b=20} suggest that ¹²⁹Xe diffusion-weighted imaging with b=12s/cm² and b=20s/cm² is sensitive to lung micro-structural abnormalities and suggests that both methods are probing similar spatial dimensions which is important since the choice of diffusion-weighted gradient can influence the measured ADC.

Conclusions: ¹²⁹Xe ADC with a b-value of 12s/cm² and 20s/cm² provides the greatest relationship with ³He ADC and standard measures of lung function.

Table 2. Relationships between ³He and ¹²⁹Xe MRI with pulmonary function measurements

	Pearson Correlation Coefficients r (p)					
	³ He	¹²⁹ Xe	¹²⁹ Xe	¹²⁹ Xe		
	ADC	ADC _{b=12}	ADC _{b=20}	ADC _{b=30}		
FEV ₁ % _{pred}	-0.72 (0.04)	-0.71 (0.047)	-0.60 (0.11)	-0.48 (0.22)		
FRC % pred	0.81 (0.01)	0.72 (0.046)	0.57 (0.14)	0.25 (0.55)		
DLCO % pred	-1.0 (<0.0001)	-0.98 (<0.0001)	-0.89 (0.003)	-0.60 (0.11)		

References

(1) Hersman FW, Ruset IC, Ketel S et al. Acad Radiol 2008 June:15(6):683-92. (2) Kirby M, Svenningsen S, Owrangi A et al. Radiology 2012 September 5.

Subject	Age	Sex	FEV_1	DLCO	³ He	¹²⁹ Xe	¹²⁹ Xe	¹²⁹ Xe
					ADC	ADC _{b=12}	ADC _{b=20}	ADC _{b=30}
Never-smo	okers							
1	49	Μ	117	95	0.267	0.049	0.043	0.038
2	69	Μ	101	101	0.233	0.051	0.045	0.033
3	79	F	96	101	0.218	0.050	0.043	0.036
4	69	F	105	94	0.244	0.054	0.041	0.040
COPD Ex	-smoker.	\$						
1	77	Μ	34	17	0.626	0.088	0.063	0.039
2	68	F	59	43	0.514	0.087	0.073	0.057
3	76	М	35	44	0.479	0.080	0.065	0.049
4	71	м	107	42	0.528	0.085	0.071	0.045

 $ADC_{b=12}$ Map

ADC Map

ADC_{b=20} Map

 $ADC_{b=30}$ Map

- Figure 1. Correlation between ³He and ¹²⁹Xe MRI ADC
 A. Central coronal ³He and ¹²⁹Xe MRI ADC maps.
 B. ³He ADC was significantly correlated with ¹²⁹Xe ADC_{b=12} (r=.98, p<.0001).
 C. ³He ADC was significantly correlated with ¹²⁹Xe ADC_{b=20} (r=.91, p=.002).
 D. ³He ADC was not significantly correlated with ¹²⁹Xe ADC_{b=30} (r=.60, p=.11).