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Introduction: Spherical deconvolution methods have been proposed to overcome the limitations inherent in the diffusion tensor model in 
regions of crossing fibres1,2. While spherical deconvolution is very sensitive to noise, the problem is greatly reduced by introducing a non-
negativity constraint3,4. These improved methods are already being routinely used to obtain high quality results. However, there are two 
types of data where these methods provide limited results: (i) clinical ‘DTI’ data, acquired at relatively low b-values of ~1000s/mm2 with 
relatively few DW directions (~12-20); these types of historical data are commonplace, and difficult to analyse robustly using HARDI 
methods in general due to their coarse angular sampling and relatively low overall contrast-to-noise ratio (CNR). (ii) high b-value, high 
spatial resolution HARDI data, where reduced signal-to-noise ratio (SNR) also leads to poor overall CNR, as well as significant problems 
with Rician bias. The aim of this study is to incorporate Rician bias correction and a constraint to enforce smoothness along fibre directions 
into the non-negativity constrained spherical deconvolution framework to allow the robust processing of such datasets. 
Methods: We extend the constrained spherical deconvolution (CSD) approach of Tournier et al.3, which we briefly summarise here. Starting 
from a heavily filtered initial estimate of the fibre orientation distribution (FOD) (obtained using an lmax=2 linear spherical deconvolution), 
the amplitude of the current FOD estimate fn is evaluated along a set of 300 uniformly sampled directions, and any directions with negative 
amplitudes are used to form the Tikhonov constraint matrix Nn that evaluates the FOD amplitudes along those directions only. This updated 
problem is then solved using ordinary least-squares to obtain the updated FOD estimate fn+1: 
 ௡݂ାଵ ൌ argmin௙ ݂ܯ‖ൣ െ ݀‖ଶଶ ൅ ‖negߣ ௡݂ܰ‖ଶଶ൧ (1) 

where M is the spherical convolution matrix relating FOD coefficients to DW 
signal intensities, d is the vector of measured DW signals, and λneg is the 
weight of the non-negativity constraint. A new constraint matrix Nn+1 is then 
formed from fn+1 for use in the next iteration. 
In this work, we also include a Rician bias correction approach, using an 
approximate equation for the expectation of the measured signal s = R(a, σ) = 
√(a2 + 1.12σ2), given actual signal a and noise σ (similar to that proposed in 5). 
The first term in eqn. 1 is modified to be the sum of squares between the 
measured signals and their predicted values R(a, σ). This can be expressed as a 
least-squares problem by applying the opposite correction to the measured 
signals d, i.e. dn = d + an – R(an, σ), with an = M fn (note that we have extended 
the definition of R(a, σ) to apply independently to each element of the vector 
a).  
We also include a smoothness constraint along fibre orientations, based on the 
anisotropic weighted average of the current FOD estimates in the 
neighbourhood gn: 
 ݃௡ ൌ ∑ ܳ௫ ௡݂ሺݔሻ௫∈௏  (2) 
where x refers to a voxel in the neighbourhood V of the current voxel of 
interest, and Qx applies directional weighting to its input FOD, to ensure 
smoothing is only performed over similar directions. The latter is computed as: 

 ܳ௫ ൌ ܰିଵ ௫ܹܰ,								with	 ௫ܹ;௜,௜ ൌ exp ൬െ ఋమೣଶఙഃమ െ ఌమೣଶఙചమ൰ (3) 

where δx is the projected distance to voxel x along direction vector ûi, εx is the 
corresponding perpendicular distance (see Fig. 1), and Wx is a diagonal matrix. 
Briefly, this projects the FOD onto amplitudes along the set of (300) sampled 
directions, weights each contribution according the anisotropic weights Wx, 
and converts back to FOD coefficients. The standard deviation terms control 
the size of the neighbourhood; in this study, values used were σδ = 1 voxel and 
σε = 0.425 voxel (i.e. FWHM=1 voxel). This is then included as an additional 
Tikhonov constraint with weight λsmooth, to give the following equation for the 
full problem: 
 ௡݂ାଵ ൌ argmin௙ ݂ܯ‖ൣ െ ݀௡‖ଶଶ ൅ ‖negߣ ௡݂ܰ‖ଶଶ ൅ ݂‖smoothߣ െ ݃௡‖ଶଶ൧ (4) 

which can readily be solved using standard least-squares methods. 
Results: The proposed approach was assessed on two datasets: a ‘DTI’ dataset 
(Siemens 3T TIM Trio, 12 channel head coil, 12 DW directions, 
b=1000s/mm2, 2mm isotropic voxel size, 112×112 matrix, 70 slices); and a 
high-resolution dataset (Siemens 3T Skyra, 32 channel head coil, 64 DW 
directions, b=3000s/mm2, 1.2mm isotropic voxel size, 192×192 matrix, 100 
slices). Results are shown in figures 2 & 3 respectively. In all cases, convergence was achieved within 10 iterations, leading to reconstructions times of ~9min (for the 
‘DTI’ dataset) and ~30min (for the high-resolution dataset) on a standard workstation computer.  
Discussion and Conclusion: the proposed approach resulted in significantly improved results in both datasets , particularly for the high resolution dataset, at the 
expense of a loss of angular resolution compared to the original CSD. This suggests that the Rician bias correction and neighbourhood weighting are particularly 
beneficial for these types of data. However, for the high resolution dataset the SNR in the centre of the brain was too low for the approach to provide useable results, 
although improvements were nonetheless evident (data not shown). Based on this dataset, the minimum SNR where this approach can provide reasonable results is 
approximately 5, while good results were obtained in the periphery where the SNR was approximately 8. This approach should allow higher resolution data to be 
processed more reliably than is currently feasible, and can be used to improve results for dataset originally intended for DTI analyses, provided they were acquired using 
at least ~12 DW directions. 
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Figure 3: coronal projection of FODs (top) and whole-brain fibre-tracking (bottom) in 
the centrum semiovale, obtained from a b=3000s/mm2, 1.2mm isotropic voxel, 64 DW 
directions data set, processed using standard CSD (left) and the proposed Rician 
corrected, neighbourhood regularised CSD approach. 

Figure 2: coronal projection of FODs in the centrum semiovale, obtained from a 
b=1000s/mm2, 2 mm isotropic voxel size, 12 DW directions data set, processed using 
standard CSD (left) and including Rician correction & neighbourhood regularisation 
(right). 

Figure 1: illustration of 
the distances used to set 
the neighbourhood 
weights (see Methods). 
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