Anamolous Behavior of Lanthanide Chelates at 7T

Talaignair N Venkatraman¹ and Christopher D Lascola²

¹Radiolgy, Duke University Medical Center, Durham, NC, United States, ²Radiology, Duke University Medical Center, Durham, NC, United States

Purpose / Introduction: Clinical 7T MR imaging is a rapidly emergent modality, yet the behavior of common lanthanide chelates at higher field strengths remains poorly characterized. Classic contrast agents such as Gd-DTPA, as well as more recent approved compounds such as Gadofovest, have been characterized primarily at lower field strengths [1, 2]. Although historical studies have revealed unexpected and sometimes paradoxical relaxation properties of lanthanide chelates at higher fields, only limited data exists on the behavior of these more recently approved contrast agents at 7T [3]. In this study, we investigated both longitudinal and transverse relaxivities of Magnevist and Ablavar at clinically relevant concentrations in the presence and absence of human serum albumin (HSA) at 7.0T. These data reveal paradoxical behavior of Gadofovest in the presence of protein at higher field strength. The importance of measuring both r_1 and r_2 relaxivities at high field is also discussed.

<u>Materials and Methods</u>: <u>Phantoms</u>: Magevist[®] (Bayer Pharma), Ablavar[®] (Lantheus Medical Imaging), were diluted with 1_X PBS and transferred to 1.5CC vials over the range of 500µM, 125µM, 62.5µM, 32.3µM. For Human Serum Albumin (HSA) phantoms, a stock of HSA 25% (Talecris BioTheropeutics) was diluted with 1_X PBS to 4% and 20%. <u>MRI Measurements</u>: All experiments were carried out using a Bruker Biospec Bruker 70/30 7T MRI scanner (Billerica, MA, USA) with quadrature volume coil set up. All phantoms were scanned at 20°C. The T₁ experiments were performed using saturation-recovery sequence with the following parameters: Matrix Size 256 × 256, FOV = 6 × 6 and TE = 9.5ms, TR =60, 300, 750, 1500, 4000 and 8000 msecs. The T₂ experiments were performed with the following parameters. FOV = 6 × 6, Matrix Size 256 × 256; TR = 2400 ms; TE = 20, 40, 60, 80, 100, 120, 140 and 160 msecs. T₁ & T₂ maps were post-processed using Paravision 5.1 (Bruker, Billerica, MA, USA).

<u>Results and Discussion</u>: Figure 1A and 1B are plots of molar relaxivity at different concentrations for Ablavar and Magnevist. Both these compounds show steady relaxivity over the concentration range studied with and without HSA. The r_1 and r_2 relaxivities of 0% (1x PBS) are 4.7 mM⁻¹ sec⁻¹ and 5.7 mM⁻¹sec⁻¹. The $r_1 \& r_2$ relaxivities in 4% and 20% HSA are 5.3 mM⁻¹sec⁻¹ & 7.1 mM⁻¹sec⁻¹ and 5.9 & 10.8 mM⁻¹sec⁻¹ (Table. 1). The ratio r_2/r_1 increased from 1.2 (0%) to 1.8 (20%). In the case of Ablavar, r_1 decreased from 9.5 mM⁻¹sec⁻¹ (at 0%) to 6.0 mM⁻¹sec⁻¹ (at 20%) with HSA, whereas r_2 increased with % of HSA. Figure 2 shows r_2/r_1 for Magnevist and Ablavar at 0%, 4% and 20% HSA. For Magnevist r_2/r_1 remains unchanged over a wide range of HSA, while for Ablavar there is a quadratic increase [-0.0077x² + 0.53x + 1.3; R² = 1] observed. The changes in r_2/r_1 reflect weak and strong protein binding of these compounds, respectively.

10

5

0

Figure 1: Plot of r₁ relaxivity at different concentrations

0%4%20%% of HSAFigure 2: Bar graph of ratio of relaxivities r₂/r₁ with varying% of HSA for Ablavar (■)and Magnevist (■)at 20°C using

🗖 Ablavar 🛛 📮 Magnevist

ranging from 32 μ M to 500 μ M for Ablavar [A] and % of H Magnevist [B] in (1_xPBS) 0%, 4% and 20% HSA at 20°C using 7.0T. 7.0T

Fable 1. Longitudinal (r.) and Transverse (r.) relevivities	[mM ⁻¹ Soc ⁻¹	l of different control	t agants in NV.	1% and 20% HSA
(1_1) and (1_1) and (1_2) relaxivities	I Sec	of uniterent contras	agents m v 70	, 4 70 anu 20 70 mor

Tuble 1. Dongrudinia (1) and Transverse (12) relaxivities [invi see] of anterent contrast agents in 0.0, 4.70 and 20.70 HSR											
Compound	0% HSA			4% HSA			20% HSA				
	r ₁	r ₂	r_2/r_1	r ₁	\mathbf{r}_2	r_2/r_1	r ₁	\mathbf{r}_2	r_2/r_1		
Magnevist [®]	4.66	5.67	1.21	5.34	7.14	1.33	5.92	10.79	1.82		
Ablavar [®]	9.47	11.98	1.27	6.6	21.5	3.25	5.98	51.94	8.69		

All the values are calculated from linear fit of Relaxation rates $(1/T_1 \& 1/T_2)$ [Sec⁻¹] with the concentration of Contrast Agents[mM]

Conclusions: r_1 relaxivity of Ablavar at higher field strength shows paradoxical behavior in the presence of HSA as compared to lower field strength data, but nonetheless pronounced r_2 effects. Thus, behavior of a lanthanide chelate at one field strength is not necessarily predictive of behavior at another. These data also emphasize the importance of examining both r_1 and r_2 relaxation properties of various lanthanide contrast agents in tandem, given that changes in these parameters do not necessarily occur in lockstep with each other at different field strengths.

References: [1] Laurent S *et al* Contrast Media and Molecular Imaging 2006;1:128-137. [2] Lauffer RB *et al* 1998;207(2):529-538. [3] Noebauer-Huhmann IM *et al* Invest. Radiol 2010;45(9):554-558.