The Impact of Dixon Fat Suppression on Liver T1 and DCE Perfusion Quantification

Yuan Le¹, Fatih Akisik¹, Brian Dale², Karen Koons¹, and Chen Lin¹

¹Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, United States, ²MR R&D, Siemens Medical Solutions, Morrisville, North Carolina, United States

Target Audience Radiologists, MRI physicists and scientists.

Purpose It has been shown that fat signal affects both T1 and [Gd] concentration estimation from fast GRE acquisition, while wateronly images generated with Dixon technique can provide more accurate results¹⁻³. The goal of this study is to evaluate the difference in the liver T1 and DCE MRI perfusion parameters measured from non-fat-suppressed in-phase images versus Dixon water-only images in a group of patients.

Methods With institutional IRB approval and written informed consent from patients, TWIST-Dixon technique⁴ was used for liver MRI exam of 15 patients (age 18-69, 3 male/12 female) on a clinical 3T scanner. Flip angles of 5°, 10° and 20° was used to measure baseline liver T1. The dynamic pre- and post-contrast images were acquired with the infusion of 0.1mmol/kg Gd-BOPTA. Three sets of images at different time points were obtained in each breath-hold and a total of 18 sets image were obtained post-contrast. Liver perfusion parameter (K^{trans}, Ve, and iAUC) maps and T1 maps were calculated with both TWIST-Dixon in-phase and water-only images respectively using Tissue4D (Siemens, Erlangen, Germany) and MATLAB. Fat signal fraction (Signal_{fat}/Signal_{in-phase}) maps were calculated using MATLAB. The difference ΔX , defined as X_{in-phase}-X_{water-only}, for the measured parameters (T1, K^{trans}, Ve, iAUC) were ploted against fat signal fraction.

Results Figure 1 shows that, in a subject with low fat signal fraction, there was little difference in measured T1 (1069 ms using inphase images, 1083 ms using water-only images) and K^{trans} (0.082 min⁻¹ using both in-phase and water-only images) from either wateronly or in-phase images; However, in another subject with high fat signal fraction, the T1 and K^{trans} using in-phase images were 792 ms and 0.223min⁻¹, rather different from 1112 ms and 0.164 min⁻¹ respectively using water-only images. Regression analysis shows that the correlation between fat signal fraction and the differences between in-phase and water-only image based result were significant (P<0.05) for T1, K^{trans} and iAUC while not for Ve (P=0.1) (Figure 2).

Discussion In this study, T1 and fat signal fraction values were averaged from the same ROI. In DCE perfusion quantification, image registration and ROI selection were performed separately for in-phase and water-only images, which may contribute to the difference in the perfusion results. Even so, a significant correlation was found between K^{tran} and iAUC differences and the fat signal fraction. **Conclusion** Our results show that, in patients with higher liver fat signal fraction, there was a greater divergence between T1 and perfusion parameters measured using Dixon in-phase and water-only images. This result, together with our phantom study results³, suggests that Dixon fat suppression allows more reliable DCE perfusion quantification.

1. Biffar, A., Sourbron, S., Schmidt, G., et al., Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow, Magn Reson Med, 2010. 64(1): p. 115-24. 2. Le, Y., Akisik, F., and Lin, C., in *European Society for Magnetic Resonance in Medicine and Biology (ESMRMB)*. 2012. p. 642. 3. Le, Y. and Lin, C., in *OCSMRM and CSMRM joint meeting*. 2012: Xiamen, P.R.China. p. 3.8 4. Le, Y., Kroeker, R., Kipfer, H.D., et al., Development and evaluation of TWIST Dixon for dynamic contrast-enhanced (DCE) MRI with improved acquisition efficiency and fat suppression, J Magn Reson Imaging, 2012. 36(2): p. 483-91.