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We have expanded our earlier quantum mechanical treatment (1, 2) of the free induction decay and radiation damping, to 
include some analytical results, and also to incorporate the effects of cavity losses and spin relaxation.  Our earlier description is 
based on the Jaynes-Cummings (J-C) model in quantum optics (3), for the coupling of a two level atom (or a spin ½) to a lossless 
cavity, --in our case, a quantized LC oscillator--;  multiple spins may also be accommodated (4).  Our earlier results were purely 
numerical, and included no effects of dissipation.  We now give some analytic results, and also introduce cavity losses (through a 
master equation) and spin relaxation (phenomenologically). 

The cavity losses are treated by a slight modification of the usual theory for micromasers (5,6), which employs only the 
photon reduced density matrix.  Here we use instead the combined spin-photon density matrix, writing the usual cavity operators 
as Kronecker products with the spin identity.  This gives the customary damping term in the  Liouville equation: 

                   &ρ = (γ 2){(n +1)(2âρâ† − â†âρ − ρâ†â) + n(2â†ρâ − ââ†ρ − ρââ† )} 

where ρ is the density matrix, the a’s are the cavity operators for creation and annihilation (modified as noted), γ is the photon 
damping rate, and n is the photon occupation number.  In addition to this, spin relaxation is introduced through the spin operators 
for longitudinal and transverse magnetization, allied with appropriate damping constants.  The damping rates for both cavity 
dissipation, and the relaxation (inverses of T1 and T2) are scaled arbitrarily to the fundamental frequency of Rabi oscillation (7), 
here taken as unity, which serves as the temporal reference throughout. 
 Also, an elementary calculation yields the reduced density matrices at baseband for spin and the cavity in J-C model, 
which take the forms: 
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with the abbreviations c = cos 1

2 Ω0t and s = sin 1
2Ω0t , where Ω0  is the Rabi fundamental frequency.  From these it is apparent that 

the Rabi oscillation of the longitudinal moment occurs at twice the frequency of transverse moment.  This is a pure quantum effect, 
illustrative of the non-classical motion of the Bloch vector, which disappears in the more familiar Maxwell-Bloch equations (8).  
The imaginary off diagonal elements in the cavity matrix arise from the quadrature relation between transverse magnetization and 
cavity field at the Larmor frequency.  Comparison with the spin density matrix shows as well a quadrature offset at baseband. 
 The effects of dissipation are illustrated in the figures, which show the effects of progressive increase, starting from a 
lossless cavity and infinite spin relaxation times at the far left.  The spin is prepared with an initial tip of π/2; the transverse 
moment is shown in green, the longitudinal in blue, the photon population in red, and the total excitations  (the deviation of the 
longitudinal moment from its starting value, plus the number of photons; absent dissipation, a conserved quantity), in dotted black.  
The time scale is in Rabi periods. Figure 1 shows repetitive undamped Rabi oscillation, continuing indefinitely.  Figure two, with 
mild damping, shows a slow decrement in the amplitudes of the oscillatory quantities, and the total excitations.  Figure 3 (strong 
damping of the cavity and the transverse moment, weak damping of the longitudinal, shows a close resemblance to classical 
radiation damping, with the transverse moment approaching zero, as the cavity excitation dies out.  The longitudinal moment has 
begun an oscillatory path, but will eventually damp very slowly to zero, due to the long T1. 
   

 
 

 
 
 

Fig. 1:  Time evolution of 
magnetizations and photon population, 
with undamped cavity and infinite 
relaxation times.   

Fig. 3:  Similar to Fig. 2 but with 
extreme damping for photons and 
transverse magenetization.  Longitudial 
relaxation 0.1/sec; transverse relaxation 
4.0/sec, photon damping 5.0/sec. 
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Fig. 2: Similar to Fig. 1 but with 
moderate damping.  Longitudinal and 
transverse relaxation rates 0.1/sec and 
0.2/sec; photon damping rate 0.4/sec.  
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