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Target Audience:  Researchers developing imaging sequences or iterative reconstruction algorithms and others who would like to 
have tools for evaluating MR sequences and reconstructions in terms of clinically-relevant image quality metrics. 
Purpose:  The versatility of MRI has permitted the development of numerous acquisition techniques, trajectories and reconstruction 
algorithms.  Traditionally these techniques are either evaluated qualitatively in terms of artifact and noise properties, or by metrics 
such as SNR and CNR.  Modern compressed sensing (CS) reconstructions cannot be characterized by CNR or SNR due to their 
inherent nonlinearity and de-noising properties which also may remove important diagnostic information.  Furthermore, studies with 
non-anthropomorphic phantoms may not reflect in vivo performance as the effectiveness of CS is strongly dependent on the 
complexity of the object being imaged.  The purpose of this work is to develop a framework of practical image quality metrics based 
on basic tasks which act as surrogates for clinical MR uses.  A complete simulation environment has been developed for rapidly 
producing large amounts of realistic synthetic data for image quality comparison between sequences, trajectories and reconstructions. 

Methods:  Measuring task performance involves the entire imaging 
process as summarized in Fig. 1.  Here we concentrate on two tasks.  1. A 
signal localization task: correctly identify a small low-contrast object from 
a set of candidate locations; representative of clinical tasks such as 
counting MS brain lesions.  2. A shape discrimination task: determine 
where the spicule perturbation is on the edge of an otherwise uniform 
circular object; representative of tumor boundary and shape determination 
tasks.  The signals are randomly embedded in a high-resolution 
(0.17x0.17x0.33 mm) voxelized brain phantom which contains segmented 
tissue classes and associated MR parameter distributions.  For each task, 
sets of randomized images are produced 
and analyzed.  A T2-weighted spin-echo 
sequence (TR = 3000ms, TE = 20ms, 
BW = ± 64 kHz, 256x256 matrix) was 
modeled with a fully sampled Cartesian 
acquisition (FFT recon.), 256-view 
radial (FBP recon.) and a sub-sampled 
radial (128 views, CS recon.).  The CS 
algorithm was an implementation of the 
Split-Bregman method with wavelet and 
total variation constraints (regularization parameters chosen empirically).  

Task performance was assessed based on a template-matching approach.  K-space data generation and reconstruction were 
implemented in C with MPI on a 3500 core computer cluster and data analysis was performed in Matlab. 

Results: Figure 2 shows representative images for 
each task.  Figure 3a compares lesion localization 
results for 256 view Cartesian and radial 
acquisitions (4 mm signal diameter, in white 
matter)  indicating a statistically significant 
advantage for radial at T2 = 100ms.  Figure 3b 
compares equal-spaced 128 view radial 
subsampling/CS with random subsampling/CS 
(same task), indicating equal spacing results in 
superior performance.  Comparing equal-spaced vs. 

random for the shape discrimination task found no significant differences in performance, (0.444±0.031 vs. 0.440±0.032 probability of 
correct perturbation detection respectively, T2 = 120ms, perturbation length 4 mm, 1000 images per case), indicating multiple tasks 
may be necessary to adequately characterize performance.  Discussion:  These results highlight some of the analyses possible with 
this tool that cannot be performed with physical phantoms due to the numbers of images and object complexity necessary.  
Conclusion: A framework for comparing (and potentially optimizing) MR sequences using clinically relevant tasks has been 
developed.  This is particularly important for CS reconstructions, which are not amenable to other more traditional types of analysis. 

Fig. 1:  Evaluation methodology 

Fig. 2: Sample 
shape 
discrimination – 
perturbed edge 
(top) and signal 
localization 
(bottom)     128-
view CS 
reconstruction. 

Fig 3: Cartesian vs. 
radial (left) and 
under-sampled radial 
(right) results for 
lesion localization 
task (4 mm lesion 
diameter, 95% 
confidence intervals 
shown). 
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