Experimentally and Computationally Fast Method for Estimation of the Mean Kurtosis
Brian Hansen ${ }^{1}$, Torben E. Lund ${ }^{1}$, Ryan Sangill ${ }^{1}$, and Sune N. Jespersen ${ }^{1,2}$
${ }^{\prime}$ CFIN, Aarhus University, Aarhus C, Denmark, ${ }^{2}$ Department of Physics, Aarhus University, Aarhus C, Denmark

Introduction: Diffusion kurtosis imaging (DKI) is a popular extension of diffusion tensor imaging (DTI) accounting for nongaussian aspects of diffusion in biological tissue ${ }^{1}$. Recently, several studies have indicated enhanced sensitivity of mean kurtosis (MK) to tissue pathology, including stroke ${ }^{2-4}$. However, the relatively lengthy acquisition time and postprocessing required to estimate kurtosis metrics remains a barrier for further investigations, and hence current research efforts are directed at speeding up DKI ${ }^{5}$. Here we propose a very fast acquisition and postprocessing scheme for estimation of a new mean kurtosis, which is demonstrated on a large diffusion MR data set from fixed rat brain and a large data set from in-vivo human brain to be very similar to MK. We then introduce and evaluate a fast experimental protocol for estimation of this new mean kurtosis. This protocol requires only 13 diffusion weighted images, which can be acquired in less than one minute, followed by a postprocessing time of seconds. Thus, our new measure is shown to be a clinically feasible alternative to MK, even in an acute setting.
Theory: The mean kurtosis is tedious to estimate because it is the orientational average of the apparent kurtosis $K(\hat{n})$ in the direction \hat{n}, which is multiplied by the apparent diffusivity $D(\hat{n})$ in the cumulant expansion of the signal

$$
\begin{equation*}
\log S(b, \hat{n})=-b D(\hat{n})+\frac{b^{2}}{6} D(\hat{n})^{2} K(\hat{n})+O\left(b^{4}\right)=-b D(\hat{n})+\frac{b^{2}}{6} \bar{D}^{2} W(\hat{n})+O\left(b^{4}\right) \tag{1}
\end{equation*}
$$

Therefore, it is necessary to decouple $D(\hat{n})$ and $K(\hat{n})$ before averaging over directions. Here, $W(\hat{n})$ is related to the kurtosis tensor ${ }^{1} W_{i j k}$ as $W_{(\hat{n})}=\sum_{i j k} W_{j u k} n_{i} n_{j} n_{k} n_{l}$. To circumvent this difficulty, we propose instead to consider, \bar{W} the orientationally averaged value of $W(\hat{n})$

$$
\begin{equation*}
\bar{W}=\frac{1}{4 \pi} \int_{S_{2}} d \hat{n} W(\hat{n})=\frac{1}{4 \pi} \sum_{i j k l} W_{i j k l} \int_{S_{2}} d \hat{n} n_{i} n_{j} n_{k} n_{t}=\frac{1}{5}\left(W_{x x x x}+W_{y y y}+W_{z z z}+2 W_{x x y y}+2 W_{x x z z}+2 W_{y y z z}\right)=\frac{1}{5} \operatorname{Tr}(\mathrm{~W}) \tag{2}
\end{equation*}
$$

Because of Eq. (1), linear combinations of $W(\hat{n})$ along different directions as in Eq. (2) can be directly estimated by combining log of signals with diffusion gradients along corresponding directions. For example, we find that with 9 directions

$$
\begin{equation*}
\frac{1}{15}\left(\sum_{i=1}^{3} \log S\left(b, \hat{n}^{(i)}\right)+2 \sum_{i=1}^{3} \log S\left(b, \hat{n}^{(i+)}\right)+2 \sum_{i=1}^{3} \log S\left(b, \hat{n}^{(i-)}\right)\right)=-b \bar{D}+1 / 6 b^{2} \bar{D}^{2} \bar{W} \tag{3}
\end{equation*}
$$

where $\hat{n}^{(i)}, \hat{n}^{(i+)}$ and $\hat{n}^{(i-)}(\mathrm{i}=1,2,3)$, are defined as $\hat{n}^{(1)}=(1,0,0)^{\mathrm{T}}, \hat{n}^{(i+)}=(0,1,1)^{\mathrm{T}}, \hat{n}^{(1-)}=(0,1,-1)^{\mathrm{T}}$, and similarly for $i=2$ and 3 ; i.e., superscript i in $\hat{n}^{(i+)}$ and $\hat{n}^{(i-)}$ labels the position of the ' 0 '. Finally, in order to extract \bar{W}, we need to obtain an estimate of D . We do so by acquiring an additional 3 images along $\hat{n}^{(i)}$ at a lower b-value, and using the procedure in ${ }^{5}$ to estimate the apparent diffusivity along these 3 directions, followed by averaging to obtain \bar{D}. We will refer to this protocol as the $1-3-9$ protocol, and the associated estimate of \bar{W} as \bar{W}_{139}.
Methods: Fixed rat brain was imaged ${ }^{6}$ at 16.4 T (Bruker Biospin) using a standard spin echo diffusion weighted sequence. Nine $b=0$ images were acquired and 144 diffusion weighting directions were chosen to constitute a 144 point spherical 16 -design ${ }^{2}$ and distributed equally on 16 shells from $\mathrm{b}=1 \ldots 15 \mathrm{~ms} / \mu \mathrm{m}^{2}$. The remaining diffusion and imaging parameters were: TR $=3 \mathrm{~s}, \mathrm{TE}=14.7 \mathrm{~ms}$, data matrix 128×128, field of view $12.8 \mathrm{~mm} \times 12.8 \mathrm{~mm}$, slice thickness 0.5 mm , and $\Delta / \delta=8 / 2 \mathrm{~ms}$. Imaging in a human volunteer was performed on a Siemens Trio using a 32 channel head coil. For comparison to the \bar{W}, we obtained two 160 image data sets for estimation of the full kurtosis tensor and MK in a traditional way. These data sets were recorded using the optimized DKI protocol from ${ }^{8}$ with $10 \mathrm{~b}=0$ images and 30 encoding directions on 5 shells at $500,1000,1500,2000$, and $2500 \mathrm{~s} / \mathrm{mm}^{2}$. The fast $1-3-9$ protocol was based on the same sequence but used instead one $b=0$ image, 3 low b-value measurements at $b=1000 \mathrm{~s} / \mathrm{mm} 2$, and 9 directions at $\mathrm{b}=2500 \mathrm{~s} / \mathrm{mm}^{2}$. In both data set types, we obtained full brain coverage at 3 mm isotropic resolution. Acquisition time for the fast protocol was 55 secs, followed by smoothing (linear interpolation) and a 2 sec (Matlab ${ }^{\mathbb{R}}$) on standard PC) postprocessing procedure as described above. This is to be compared to 11.5 min acquisition time for the 160 image data set, with an associated postprocessing time of about 4 hours in our implementation.
Results: To compare the similarity of information in MK and \vec{W}, Fig. 1 shows maps of both metrics as computed explicitly from the full kurtosis tensor determined from a fit of the rat data to Eq. (1). The contrast is highly comparable but the arrow indicates a region where the two maps differ appreciably. A scatter plot of the two maps against each other

Fig.2: Comparison of MK and \bar{W} in normal human brain.

Fig. 3: Comparison of \bar{W} from full kurtosis tensor and W139 obtained using the fast protocol. has a linear correlation of 0.88 , and in fact, more than 90% of the MK values are within 10% of the \bar{W} value in the same pixel. The similarity between MK and \bar{W} is also seen in the human data: Fig. 2 shows MK and \bar{W} estimated from a fit to a 160 image DKI data set. Again the contrast is comparable, and a scatter plot of the human data in Fig. 2 revealed a linear correlation of 0.99 with 96% of the MK values within 10% of corresponding \bar{W} value. Having thus established the similarity of MK and \bar{W}, we now turn to comparing \bar{W} as obtained from a 160 image data set to \bar{W} as obtained using the fast 1-3-9 protocol, \bar{W}_{139}. Figure 3 shows maps of \bar{W} and \bar{W}_{139} and it is seen that the contrast is still comparable. The contrast in \bar{W}_{139} from the fast protocol is clearly of a similar nature to that from the full data set, however, differences are visible. Most notably, \bar{W}_{139} values from the fast protocol seem to underestimate the extent of regions with higher values of \bar{W}. Comparing the \bar{W} maps obtained from two 160 image data sets to eight \bar{W}_{139} maps obtained from 8 acquisitions of the 1-3-9 data sets, we find an average linear correlation of 0.97 , and an average of 87% of the \bar{W} values from the full data sets were estimated with a 10% accuracy by \bar{W}_{139}. Lastly, we consider in Fig. 4 the robustness of the fast protocol, by comparing the percentage difference between 2 repetitions (A) to a similar measure for mean kurtosis (B) using the full data set for the latter. Most of the voxels change less than 10%, and the robustness of \bar{W}_{139} is seen to be comparable to MK, despite being based on a much smaller data set. Figure 4C examines the coefficient of variation

Fig.4: Robustness of \bar{W} and \bar{W}_{139}. over the 8 repetitions of the 139 protocol, showing that it is less than 10% over most parts of the brain.

Fig. 1:MK and \bar{W} in a fixed rat brain.

