## Quantitative <sup>23</sup>Na MRI of human knee cartilage using dual-tuned <sup>1</sup>H/<sup>23</sup>Na transceiver array RF coil at 7T

Chan Hong Moon<sup>1</sup>, Jung-Hwan Kim<sup>1</sup>, Tiejun Zhao<sup>2</sup>, and Kyongtae Ty Bae<sup>1</sup>

<sup>1</sup>Radiology, University of Pittsburgh, Pettsburgh, Pennsylvania, United States, <sup>2</sup>MR R&D Collaborations, Siemens Healthcare, Pittsburgh, Pennsylvania, United States

**[Introduction]** <sup>1</sup>H MRI provides morphological information about soft tissues, while <sup>23</sup>Na MRI adds biochemical information. One of the major potential clinical applications of <sup>23</sup>Na MRI is a degenerative knee disease associated with osteoarthritis (OA). High field MR (e.g., 7T) can potentially provide higher <sup>23</sup>Na sensitivity, particularly combining with multi-array RF coil technology, thereby pixel resolution can be increased [1,2]. However, in order to acquire accurate quantitative <sup>23</sup>Na concentration ([<sup>23</sup>Na]) of thin knee cartilage of ~2.3 mm, B<sub>1</sub> RF inhomogeneity [3] and partial volume effect (PVE) should be corrected. In this study, we developed a dual-tuned (DT)

partial volume effect (PVE) should be corrected. In this study, we developed a dual-tuned (DT)  ${}^{1}$ H/ ${}^{23}$ Na knee coil at 7T with high  ${}^{23}$ Na signal sensitivity.  ${}^{23}$ Na B<sub>1</sub> field characteristics of the transceiver array  ${}^{23}$ Na coil were investigated and the inhomogeneity was corrected. In addition, point spread function (PDF) of  ${}^{23}$ Na image was measured and considered in the PVE correction.

[Methods and materials] All scans were performed using a 7T human scanner (Siemens Medical Solutions, Germany). Seven normal subjects participated in this Institutional Review Board approved study. <sup>23</sup>Na -only birdcage and multi-array DT RF coils were used (Fig. 1) and those <sup>23</sup>Na

imaging SNR were compared. High-resolution <sup>1</sup>H knee images were acquired using a 3D fast double echo and steady state (DESS) sequence (flip angle =  $25^{\circ}$ , TR/TE = 15/5 ms, resolution = 0.57 mm<sup>3</sup>). Without repositioning the subject, <sup>23</sup>Na MRI was performed using 3D ultra-short-echo-time spiral sequence (TR/TE = 100/0.27 ms, isotropic resolution = 1.7 - 5 mm<sup>3</sup>) [4]. <sup>23</sup>Na MR data from all the channels were averaged by vector summation to reconstruct <sup>23</sup>Na

(magnitude) image. A series of <sup>23</sup>Na images at >5 mm<sup>3</sup> (with all Rx channels on) were acquired with varying RF flip angles centered on 90° – average (vector summed) transmission (Tx) and reception (Rx) field (magnitude) maps were estimated by the sinusoidal curve fitting [3]. PSF of <sup>23</sup>Na images was measured from the image intensity profile across boundary of a reference cylindrical marker (15-mm diameter) in the radial direction and averaged over the  $2\pi$  perimeter. <sup>23</sup>Na signal decrease due to PVE, relaxation, and applied filtering was simulated in one dimension with different imaging resolution and cartilage thickness – simulation results were applied in quantification in [<sup>23</sup>Na] considering PDF and cartilage thickness. SNR, cartilage thickness, and [<sup>23</sup>Na] were measured in the anterior femoral cartilage (**Figs. 3A, B**). Acceptable SNR criterion was set to 20.

[Results and conclusions] <sup>23</sup>Na image SNR acquired with birdcage coil at 2-mm

resolution was below 20 (**Fig. 2B**). By using the multi-channel transceiver array coil, SNR was higher than 20 at 2 mm, but was lower than 20 at 1.7-mm resolution (**Fig. 2D**). Mean SNR of <sup>23</sup>Na image at 2-mm resolution was measured as  $26.80 \pm 3.69$  (n = 7) in the anterior femoral cartilage using the transceiver array coil. Full-width-half-maximum was measured as 5.2 mm with 2-mm pixel resolution from the PSF of <sup>23</sup>Na image. From the PVE simulation result, the

signal decay was linearly changed with the cartilage thickness; signal = 0.12\*thickness + 0.03. The cartilage thickness was measured in each subject, and PVE was corrected using the equation – mean thickness =  $3.53 \pm 0.95$  mm (n = 7) and mean [<sup>23</sup>Na] before and after PVE correction was  $86.28 \pm 35.90$  mM (n = 7) and 288.13 ± 29.50 mM (n = 7) (**Fig. 3B**). Variation of thickness and [<sup>23</sup>Na] within the cartilage was calculated as the ratio of standard deviation and the mean. Both thickness and [<sup>23</sup>Na] values before PVE correction were varied in similar order across the subjects, but [<sup>23</sup>Na] variation after PVE correction decreased at statistical significance (P < 0.002, n = 7) (**Fig. 3C**) – mean thickness variation,  $25.12 \pm 5.37$  % (n = 7) and  $14.94 \pm 5.05$  % (n = 7). In order to evaluate the proposed [<sup>23</sup>Na] quantification and to systematically investigate PVE artifacts in knee cartilage, exvivo <sup>23</sup>Na MRI of knee cartilage specimen at a sub-millimeter resolution (i.e., << cartilage thickness) is worthwhile.

In conclusion, the developed transceiver-array <sup>23</sup>Na RF coil is more sensitive than the birdcage volume coil. [<sup>23</sup>Na] in knee cartilage can be accurately quantified after correction of B<sub>1</sub> inhomogeneity and PVE with the morphological information acquired by <sup>1</sup>H MRI under DT coil setup. The developed DT <sup>1</sup>H/<sup>23</sup>Na MRI techniques can improve our understanding of biochemical changes in articular cartilage of knee OA patients.

[**Reference**] 1. Kim et al., *MRI*, 30(2012). 2. Staroswiecki et al., *JMRI*, 32(2010). 3. Boada et al., *IJIST*, 8(1997). 4. Moon et al., *Spine*, 37(2012).

[Acknowledgement] Supported by RSNA Research Scholar grant RSCH1025.



Fig. 1 <sup>23</sup>Na RF coils for knee MRI. A and B, A birdcage and transceiver array <sup>23</sup>Na coil. In the transceiver array coil design, four channel coil loops ( $120 \times 150 \text{ mm}^2$ ) (green-dotted contour) were placed on the coil frame with 20-mm overlapping. C, DT <sup>1</sup>H/<sup>23</sup>Na knee coil (birdcage <sup>1</sup>H and four-channel <sup>23</sup>Na coil).



**Fig. 2** Spatial resolution limit of <sup>23</sup>Na MRI of knee cartilage. **A**, <sup>23</sup>Na MR images using birdcage coil. **B**, SNR profiles of <sup>23</sup>Na images in A following line a - b in C. **C**, <sup>23</sup>Na MR images using transceiver array <sup>23</sup>Na coil. (Left panel) DESS <sup>1</sup>H anatomy image, and (two right panels) <sup>23</sup>Na images. **D**, SNR profiles of <sup>23</sup>Na images in C following line a - b in C. Dotted-lines in B and D are the criteria of SNR 20.



**Fig. 3** Quantification of [<sup>23</sup>Na] in the anterior femoral cartilage. **A**, DESS <sup>1</sup>H anatomy and <sup>23</sup>Na MR image. White arrowheads indicate the femoral cartilages at anterior part. White dotted rectangle is the analysis region of femoral cartilage. **B**, Measurement of cartilage thickness and [<sup>23</sup>Na], and those variations within the cartilage. **C**, Relationship between thickness and [<sup>23</sup>Na].