## Integrated Parallel Reception, Excitation, and Shimming (iPRES)

Hui Han<sup>1</sup>, Allen W. Song<sup>1</sup>, and Trong-Kha Truong<sup>1</sup>

<sup>1</sup>Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

TARGET AUDIENCE: Anyone interested in MR engineering, high field systems, RF coils, parallel excitation and reception, or B<sub>0</sub> and B<sub>1</sub> shimming.

**PURPOSE:** Ever increasing static magnetic field ( $B_0$ ) strengths have posed many technical challenges, most notably a higher  $B_0$  field and RF field ( $B_1$ ) inhomogeneity. Active shimming is the most widely used  $B_0$  shimming method and typically employs spherical harmonic (SH) coils. In practice, however, SH shimming cannot effectively correct for high-order localized field distortions. Recently, Juchem et al. have proposed a multi-coil modeling and shimming method <sup>1,2</sup>, in which a large number of small localized electrical coils is used to shape the  $B_0$  field, thus achieving a better performance than SH shimming. However, it requires a separate set of shim coils adjacent to the RF coil array, which takes valuable space around the subject and also raises comfort and safety concerns for the subject. In addition, the electromagnetic interference between the RF and shim coil arrays (RF shielding) needs to be minimized at the cost of a reduced shimming performance <sup>2</sup>. To address these limitations, we propose a new general concept termed integrated parallel reception, excitation, and shimming (iPRES), based on a multiple-coil array and perform proof-of-concept experiments with a two-coil array to demonstrate its feasibility.

**THEORY:** The iPRES concept is based on a simple principle in electronics that both an RF and a direct current (DC) can coexist independently in the same circuit with no electromagnetic interference between each other. An implementation example of this concept is shown in Fig. 1. Its distinctness from a traditional parallel transmit/receive coil array<sup>3</sup> lies in that not only RF currents flow in each loop element, but DC currents circulate in the same loops as well. The DC mode is integrated into each coil element by using an appropriate circuit design, so that the B<sub>0</sub> field produced by the DC currents can be used for B<sub>0</sub> shimming. Such a unified coil system therefore has the capability to perform parallel excitation, reception, and B<sub>0</sub> shimming simultaneously to achieve a uniform B<sub>1</sub> field, accelerated parallel imaging, and a homogeneous B<sub>0</sub> field, respectively. Furthermore, multi-coil field modeling and shimming <sup>1,2</sup> has shown that the B<sub>0</sub> field shaping capability does not critically depend on the exact number, size, positioning, or geometry of the individual coils as long as a reasonably large number of coils is used (typically 24-48). Therefore, it is natural to expect that, in a unified coil system, a large number of coils working in the DC mode will provide an effective B<sub>0</sub> shimming alike.

**METHODS:** A two-coil array made of a figure-8 and a single-loop surface coil (11×11 cm) was designed for concurrent RF excitation/reception and  $B_0$  shimming. In Fig. 2, the addition of an inductor  $L_1$  in conjunction with a DC power supply forms a closed loop and allows a DC current to circulate in the figure-8 pathway, thereby generating a  $B_0$  field that can be used for  $B_0$  shimming. Both coils were positioned, partially overlapped, in a coronal plane on top of a square water phantom containing a grid. A  $B_0$  inhomogeneity was introduced in the phantom by placing a stack of 20 coins (US quarters) on top of the coils, resulting in a strong localized field distortion similar to those present in brain regions such as the inferior frontal cortex. The optimal DC currents to be applied in both coils were automatically determined in Matlab by minimizing the residual field between a weighted combination of two  $B_0$  maps acquired with a DC currents.

**RESULTS:** Fig. 3 shows representative EPI images and  $B_0$  maps in a 6×6 cm ROI acquired on a 3T scanner under three different conditions. First, an image was acquired without DC current, resulting in minimal geometric distortions (a). Second, a  $B_0$  inhomogeneity was introduced by placing the coins, resulting in a strong localized nonlinear  $B_0$  field distortion (d) and nonlinear geometric distortions (b). Third, individually optimized DC currents were applied in both coils to generate a shim field and compensate for the  $B_0$  inhomogeneity introduced by the coins, resulting in a significant reduction of the  $B_0$  inhomogeneity (e) and geometric distortions (c).

**DISCUSSION and CONCLUSION**: These proof-of-concept experiments demonstrate the feasibility of the proposed iPRES concept. Although there are residual  $B_0$  inhomogeneities and geometric distortions because our experiments were performed with only two coils, which offers a limited flexibility for  $B_0$  shimming, it is expected that a more effective shimming can be achieved with a larger number of coils. The iPRES concept benefits from many potential advantages. First, by using multiple localized coils, it has the ability to achieve a more effective high-order shimming than SH shimming. Second, by eliminating the need to use separate coil arrays for excitation/reception and  $B_0$  shimming, as in the multi-coil shimming method <sup>1,2</sup>, it can simplify the scanner design, save valuable space within the magnet bore, avoid the RF shielding effect, and simultaneously maximize the performance of both the RF coil and the localized  $B_0$  shimming, since the unified coil array can be in close proximity to the subject. Finally, a unified coil array that can perform parallel excitation and reception as well as  $B_0$  and  $B_1$  shimming concurrently will be particularly beneficial for ultra-high field MRI (7T and above), given its potential for simultaneously addressing two critical problems ( $B_0$  and  $B_1$  inhomogeneity).



Fig. 1: Example of the iPRES concept: schematic diagram of a 16channel unified coil system for cardiac imaging.



Fig. 2: Schematic circuit of the modified figure-8 coil for creating a DC mode. The inductors  $L_2$  stop RF currents. The RF balun reduces RF coupling.  $C_f \& C_M$  are tuning & matching capacitors.



Fig. 3: EPI images (**a**-**c**) and B<sub>0</sub> maps (**d**-**e**) acquired with no coins, DC = 0 mA (**a**), with coins, DC = 0 mA (**b**,**d**), or with coins, DC = -278 mA (single-loop) and 280 mA (figure-8) (**c**,**e**).

**REFERENCES:** 1. Juchem C et al. Magnetic field modeling with a set of individual localized coils. J Magn Reson. 2010;204:281–289. 2. Juchem C et al. Dynamic multi-coil shimming of the human brain at 7 T. J Magn Reson. 2011;212:280–288. 3. Gräßl A et al. Design, evaluation and application of a modular 32 channel transmit/receive surface coil array for cardiac MRI at 7T. Proc. 20<sup>th</sup> ISMRM 2012;p 305. Work supported by NIH grants EB012586 and EB009483.