DYNAMIC OE-MRI OF THE LUNG IN ASTHMA Weijuan Zhang^{1,2}, Robert M Niven^{3,4}, Simon S Young⁵, Yuzhen Liu⁵, Penny L Hubbard^{1,2}, Geoffrey JM Parker^{1,2}, and Josephine H Naish^{1,2} ¹Centre of Imaging Sciences, The University of Manchester, Manchester, United Kingdom, ²Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom, ³North West Lung Centre, University Hospital of South Manchester, Manchester, United Kingdom, ⁴Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, United Kingdom, ⁵Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, United Kingdom INTRODUCTION Dynamic oxygen-enhanced (OE-) MRI can obtain spatial information on regional oxygen delivery and uptake in the lung by using paramagnetic oxygen (¹⁶O₂) as a contrast agent. The aim of this study was to estimate the feasibility of dynamic OE-MRI in the assessment of lung functional changes in asthmatic patients and to explore the correlation between dynamic OE-MRI and spirometry. METHODS Dynamic OE-MRI was performed on 4 mild asthmatic patients (the percent of predicted forced expiratory volume in 1 s (FEV₁% Pred norm, pre-bronchodilator)> 85%; treatment requirement is consistent with BTS/SIGN asthma guideline step 1 or step 2) and 6 severe asthmatic patients (FEV₁% Pred norm=50%-80%; treatment requirement is consistent with BTS/SIGN asthma guideline step 4 or step 5) twice at 1 month apart using a 1.5 T Philips Achieva MR system. Spirometry was carried out within 7 days prior to MR scans. Ethical approval and written informed consent were obtained. All patients withheld short-acting β₂-adrenergic receptor agonists for 6 hours and long-acting β₂-adrenergic receptor agonists for 12 hours prior to each visit. Baseline T₁ mapping was performed while subjects breathed medical air (21% O₂) using a 2D inversion-recovery turbo spin echo sequence (IR-TSE) with a range of inversion times (TI=60, 300, 1100, 2000 and 5000 ms). This was followed by a T₁-weighted dynamic acquisition to monitor the change in T₁ during gas switchover from medical air to 100% O₂ using the same sequence but with a single TI=1100 ms. Other parameters were: TR/TE 6000 ms/3.2 ms, 128 x 128 matrix, 10 mm thickness, pixel size 3.52 mm x 3.52 mm, free breathing, no respiratory or cardiac triggering. A single coronal slice was acquired. All images were registered to the end inspiration position ¹. The dynamic measurements of T₁(t) were then converted to the changes in the partial pressure of O₂ (ΔPO₂(t)) in the lung parenchyma. The ΔPO₂(t) curve was fitted pixel-by-pixel according to Δ PO₂(t)= Δ PO_{2max}(1-exp(-t/τ_{up})) and Δ PO₂(t)= Δ PO_{2max} exp(-t/τ_{down}) for the calculation of O₂ wash in (τ_{up} in min) and wash out (τ_{down} in min) time constants and the plateau Δ PO₂ value (Δ PO_{2max} in mmHg) ². **RESULTS** As can be seen in the examples in Figure 1, the severe asthmatic patient shows more low value regions of ΔPO_{2max} (in blue). The τ_{up} and τ_{down} maps show more heterogeneity in severe asthmatic lungs than mild asthmatic lungs. The group averaged ΔPO_2 time course curve of the mild group shows a steeper O_2 wash-in slope and a higher plateau than that of the severe group (Figure 2). There was a statistically significant difference between the plateau ΔPO_2 values for the two groups (Table 1), although not in the mean value of τ_{up} and τ_{down} . The inter quartile range of τ_{up} was significantly wider in the severe asthma group than in the mild asthma group, while the inter quartile range of τ_{down} between the two groups were not significantly different. Table 2. shows the Spearman's rank correlation between the mean values of ΔPO_{2max} , inter quartile range of τ_{up} and spirometric parameters. ΔPO_{2max} had a borderline correlation with age and FEV₁% Pred norm, a moderate correlation with the actual value of post-bronchodilator FEV₁ and FEV₁/FVC (forced vital capacity) and a strong correlation with actual value of pre-bronchodilator FEV₁. The mean value of τ_{up} and τ_{down} showed no linear correlation with age and spirometric parameters, while the inter quartile range of τ_{up} was significantly correlated with FEV₁% Pred norm., pre bronchodilator FEV₁, post bronchodilator FEV₁ and FEV₁/FVC. **CONCLUSION** Quantitative dynamic OE-MRI outputs are sensitive to disease sensitivity in asthma and are correlated with spirometry. The spatial information of oxygen delivery and uptake of the lung available from dynamic OE-MRI using a non-ionising source of contrast makes it an attractive option in the assessment of asthma. REFERENCES 1. Naish, J.H., et al., Magn Reson Med, 2005. 54(2): p. 464-469. 2. Kershaw, L.E., et al. Magn Reson Med, 2010; 64: p 1838-1842. Figure 1. The OE-MRI parameter maps of a severe asthmatic participant (F, 19yrs, FEV₁ % Pred norm. =63.5%) and a mild asthmatic participant (F, 19yrs, FEV₁ % Pred norm.=99.0%). ACKNOWLEDGEMENT: This work was supported by the EPSRC and AstraZeneca. Table 1. Comparison of OE-MRI parameters in two groups | | Mild asthma | Severe asthma | p-value | |---------------------------------|------------------|------------------|-----------| | Mean ΔPO _{2max} (mmHg) | 288.7±43.8 | 172.4± 37.2 | p=0.002** | | Mean τ_{up} (min) | 0.86±0.14 | 1.77±1.14 | p=0.159 | | Mean τ_{down} (min) | 1.17 ± 0.87 | 2.67±2.16 | p=0.257 | | p-value [†] | p=0.477 | p=0.502 | | | $IQR_\Delta PO_{2max}$ | 138.6 ± 53.2 | 126.0 ± 25.3 | p=0.622 | | IQR_τ_{up} | 0.24 ± 0.10 | 0.90 ± 0.35 | p=0.008** | | IQR_τ_{down} | 0.72 ± 0.75 | 1.37 ± 1.12 | p=0.171 | Tp-value between τ_{up} and τ_{down} ; *** The difference is significant at 0.05, 0.01 level. Table 2. Spearman's rank correlation between OE-MRI and spirometry | | | Age | FEV_{1preBD} | FEV ₁ % _{Pred norm} | FEV ₁ /FVC | FEV _{1post BD} | |--------------------------|-----|--------|----------------|---|-----------------------|-------------------------| | Mean ΔPO _{2max} | CC§ | -0.638 | 0.830 | 0.636 | 0.721 | 0.767 | | | p | 0.047* | 0.003** | 0.048* | 0.019* | 0.016* | | IQR_r_{up} | CC | 0.438 | -0.673 | -0.745 | -0.685 | -0.767 | | | p | 0.206 | 0.033* | 0.013* | 0.029* | 0.016* | §Spearman's rank correlation coefficient. *,** The correlation is significant at 0.05, 0.01 level. Time (min) Figure 2. The group averaged dynamic ΔPO_2 curve in mild asthma (blue) and severe asthma (green).