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TARGET AUDIENCE: Magnetic resonance image (MRI) reconstruction developers.
PURPOSE: Advanced image reconstruction strategies often require explicit knowledge about the
MRI acquisition system or target signal. For example, the GRAPPA [1] method for parallel MRI
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requires a kernel model of inter-coil k-space correlations that result from receiver sensitivity

modulations; and kt-BLAST [2] requires a model of physiological bulk motion to perform dynamic N .

MRI reconstruction. This information is typically obtained from an auxiliary scan or embedded 2 f f

reference signal, either of which necessitates prolonged scan duration. Error propagation also Space

results when this information is presumed as exact during reconstruction. Recently, it has been =P T P ]
shown that parallel and dynamic MRI reconstruction can each be formulated as a low-rank ma- Fig 1: The dynamic multi-channel MRI signal can be viewed
trix regression problem whose only variable quantity is the target signal. Amongst other bene- as a 3-way tensor, which yields 3 different “unfoldings”

fits, “calibrationless” parallel [3-5] and “training-free” dynamic [6-8] MRI reconstruction strate-
gies offer improved sampling flexibility and statistical efficiency. In this work, we present a unify-
ing tensor regression framework for calibrationless reconstruction of dynamic and multi-channel
MRI data.

METHODS: The target dynamic multi-channel (2D or 3D) MRI signal, X, can be described as a 3-
way tensor with dimensions space, time, and coils (Fig. 1). Correspondingly, the observed k-
space signal is G = A{X} + Z, where A{‘} is an undersampled Fourier operator that acts along
only the spatial tensor dimension and Z is complex Gaussian noise, and X can be estimated from
G via penalized regression: [)?] = argmin{P(X) + ||A{X} — G||%}, where ||| is the Frobenius
norm and P(:) is a penalty functional. As with matrices, P(*) can be defined so as to promote
low-rankedness. For tensors, a natural penalty is P(X) = ?:1 lirank(X(i)), the weighted sum
of the n-rank vector [9,10], where X;) is the i unfolding. However, rank is nonconvex, and
minimization of spectral functionals of highly anisotropic matrices can face degree-of-freedom
limitations [8]. Thus, we let P(X) = ¥3_, 4, Z,,en”Rb{X(,-)} _» where ||°[l, is the nuclear norm
(convex envelope of rank), R,{X} extracts a spatial submatrix of X;, and Q is a set of blocks
that uniformly tiles the tensor spatial dimension. We also know from [4,7] that sparsity and low-
rankedness are complementary objectives, and so finally consider:

[X] = argmin {PSPARSE(X) + Z?=1 4 Zbeﬂ”Rb{X(i)} N + [lA{X} - G||12v}: (1)
where Pgparse(+) promotes image sparsity. For single-coil dynamic MRI reconstruction, (1) exact-
ly resorts to the matrix model defined in [8], and to those from [6,7] when Q comprises a single
full-sized block. For static multi-channel MRI reconstruction, (1) yields CLEAR [4]. Thus, (1) unifies
existing image-domain low-rank matrix methods for dynamic and parallel MRI as well as general-
izes and extends them. The problem in (1) can be efficiently solved via alternating direction
method of multipliers (ADMM) [11], with constraint set {X(l) =Y1,X0) =Y, X3 =Y3,X=
Z} and augmented Lagrangian functional

[X] = argmin{Psparsp(2) + X1 4; Theal R Y33l + 14(X3 - GIIF}. (2)
RESULTS: Fig. 2 shows example results for a 144x144x19 short-axis cine cardiac exam (GE Signa
v.14.0, 1.5 T, FIESTA, FA=50°, TR/TE=2.8/1.2 ms, 8 channel upper body coil) that was retrospec-
tively 4x variable-density Poisson Disk undersampled in k-t space [12]. For (1), we define
Pgparse () as the joint sparsity (across coils) generalization of the kt-SPARSE [13] penalty:
Poparse(Z) = /10||[LP{X]](3)||12, where W{-} is temporal Fourier transform. Minimization of (1)
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via ADMM using only the tensor n-rank penalty, and with both the n-rank and sparsity, was
executed. Regularization parameters were manually tuned. For the tensor penalty, & comprised
the set of disjoint 6x6 spatial blocks. Each 50 iteration Matlab reconstruction required only a few
minutes of computation on a dual 2.93 GHz 6-core machine with 24 GB MHz memory. Sliding
window reconstruction was also performed.

DISCUSSION: As expected, sliding window reconstruction exhibits marked blurring in the phase
encoded direction as well as residual aliasing artifact. Standalone low n-rank tensor reconstruc- T

tion effectively suppresses this aliasing and recovers dominant morphological features. Incorpo- m N

rating the auxiliary sparsity penalty complementarily improves recovery of tissue morphology Fig 2: Example reconstructions of a 4x-undersampled short-
(green arrow) as well as fine anatomical structure (red arrow). These observations mirror those axis cine cardiac MRI sequence (C=8,T=19)
previously seen in [7] for low-rank matrix recovery of dynamic MRI series.
CONCLUSION: The low n-rank tensor approach provides a unifying image-domain foundation for high-quality calibrationless parallel and dynamic MRI reconstruction.
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