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TARGET AUDIENCE: Magnetic resonance image (MRI) reconstruction developers. 
PURPOSE: Advanced image reconstruction strategies often require explicit knowledge about the 
MRI acquisition system or target signal. For example, the GRAPPA [1] method for parallel MRI 
requires a kernel model of inter-coil k-space correlations that result from receiver sensitivity 
modulations; and kt-BLAST [2] requires a model of physiological bulk motion to perform dynamic 
MRI reconstruction. This information is typically obtained from an auxiliary scan or embedded 
reference signal, either of which necessitates prolonged scan duration. Error propagation also 
results when this information is presumed as exact during reconstruction. Recently, it has been 
shown that parallel and dynamic MRI reconstruction can each be formulated as a low-rank ma-
trix regression problem whose only variable quantity is the target signal. Amongst other bene-
fits, “calibrationless” parallel [3-5] and “training-free” dynamic [6-8] MRI reconstruction strate-
gies offer improved sampling flexibility and statistical efficiency. In this work, we present a unify-
ing tensor regression framework for calibrationless reconstruction of dynamic and multi-channel 
MRI data.  
METHODS: The target dynamic multi-channel (2D or 3D) MRI signal, , can be described as a 3-
way tensor with dimensions space, time, and coils (Fig. 1). Correspondingly, the observed k-
space signal is , where ∙  is an undersampled Fourier operator that acts along 
only the spatial tensor dimension and  is complex Gaussian noise, and  can be estimated from 

 via penalized regression: argmin ‖ ‖ , where ‖∙‖  is the Frobenius 
norm and ∙  is a penalty functional. As with matrices, ∙  can be defined so as to promote 
low-rankedness. For tensors, a natural penalty is ∑ rank , the weighted sum 
of the n-rank vector [9,10], where  is the th unfolding. However, rank is nonconvex, and 
minimization of spectral functionals of highly anisotropic matrices can face degree-of-freedom 
limitations [8]. Thus, we let ∑ ∑ ∗∈ , where ‖∙‖∗ is the nuclear norm 
(convex envelope of rank),  extracts a spatial submatrix of , and  is a set of blocks 
that uniformly tiles the tensor spatial dimension. We also know from [4,7] that sparsity and low-
rankedness are complementary objectives, and so finally consider:  argmin SPARSE ∑ ∑ ∗∈ ‖ ‖ , (1) 
where SPARSE ∙  promotes image sparsity. For single-coil dynamic MRI reconstruction, (1) exact-
ly resorts to the matrix model defined in [8], and to those from [6,7] when  comprises a single 
full-sized block. For static multi-channel MRI reconstruction, (1) yields CLEAR [4]. Thus, (1) unifies 
existing image-domain low-rank matrix methods for dynamic and parallel MRI as well as general-
izes and extends them. The problem in (1) can be efficiently solved via alternating direction 
method of multipliers (ADMM) [11], with constraint set , , ,

 and augmented Lagrangian functional argmin SPARSE ∑ ∑ ‖ ‖∗∈ ‖ ‖ . (2) 
RESULTS: Fig. 2 shows example results for a 144x144x19 short-axis cine cardiac exam (GE Signa 
v.14.0, 1.5 T, FIESTA, FA=50o, TR/TE=2.8/1.2 ms, 8 channel upper body coil) that was retrospec-
tively 4x variable-density Poisson Disk undersampled in k-t space [12]. For (1), we define SPARSE ∙  as the joint sparsity (across coils) generalization of the kt-SPARSE [13] penalty: SPARSE Ψ , , where Ψ ∙  is temporal Fourier transform. Minimization of (1) 
via ADMM using only the tensor n-rank penalty, and with both the n-rank and sparsity, was 
executed. Regularization parameters were manually tuned. For the tensor penalty,  comprised 
the set of disjoint 6x6 spatial blocks. Each 50 iteration Matlab reconstruction required only a few 
minutes of computation on a dual 2.93 GHz 6-core machine with 24 GB MHz memory. Sliding 
window reconstruction was also performed. 
DISCUSSION: As expected, sliding window reconstruction exhibits marked blurring in the phase 
encoded direction as well as residual aliasing artifact. Standalone low n-rank tensor reconstruc-
tion effectively suppresses this aliasing and recovers dominant morphological features. Incorpo-
rating the auxiliary sparsity penalty complementarily improves recovery of tissue morphology 
(green arrow) as well as fine anatomical structure (red arrow). These observations mirror those 
previously seen in [7] for low-rank matrix recovery of dynamic MRI series.    
CONCLUSION: The low n-rank tensor approach provides a unifying image-domain foundation for high-quality calibrationless parallel and dynamic MRI reconstruction.   
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Fig 1: The dynamic multi-channel MRI signal can be viewed 

as a 3-way tensor, which yields 3 different “unfoldings” 

 
Fig 2: Example reconstructions of a 4x-undersampled short-

axis cine cardiac MRI sequence (C=8,T=19) 
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