In vivo fluorine-19 MRI at 3 Tesla to visualize myocardial infarction inflammation in a porcine model

Jia Zhong^{1,2}, David Schwartzman³, Claudiu Schirda⁴, Anthony Balducci⁵, Brooke Helfer⁵, Amy Wesa⁵, and Eric T Ahrens^{1,2}

¹Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States, ²The Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States, ³Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, ⁴Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States

Introduction

Myocardial infarction (MI) results in permanent left ventricle (LV) scarring that causes diminished pumping efficiency and undesirable myocardial remodeling, which may eventually lead to heart failure. Towards the repair or regeneration of myocardial contractility, there is increasing interest in reparative biological materials, such as cells and proteins, which are introduced into the infarct zone early after MI. Although direct LV injection (DLVI) of these biological materials into the LV wall presents a promising location for the delivery of biological materials, the utility of DLVI has been hampered by the lack of methods for accurate spatial targeting of affected tissue. Gd-enhanced MRI can show myocardial lesions, but displays non-specific contrast enhancement from a wide range of pathologies. Given that inflammation is a key early response to the ischemic insult, images of its spatial location represents a promising means to identify recently infarcted regions. With this information, one can potentially deliver therapeutic biological materials to the infarct boundary by DLVI with precision. In this study, we demonstrate the feasibility of using intravenously infused perfluorocarbon (PFC) emulsion and ¹⁹F MRI detection to visualize myocardial macrophage burden in a porcine model of MI. PFC emulsion is taken up by macrophages *in vivo* which accumulate at sites of inflammation. The study was performed using a 3 Tesla clinical scanner and clinically relevant scan times.

Materials and methods

Animal model of MI: MI was induced in adult wild-type swine (35-45 kg) by positioning a coronary fluoroscopy-guiding catheter into the left main coronary artery ostium via right femoral artery. The balloon catheter was advanced into the circumflex artery and inflated for 30 minutes. Twelve hours after deflation, 0.5 liter PFC emulsion (VS-1000, Celsense, Inc., PA) was slowly administered over ~30 minutes via a peripheral vein.

In vivo ¹⁹F MRI: Two days after PFC emission (VS-1000, Celsense, Inc., FA) was slowly administered over ~30 minutes via a peripheral vent. In vivo ¹⁹F MRI: Two days after PFC injection, animals underwent ¹⁹F/¹H MRI using a 3 T Siemens Tim Trio scanner. A custom-built ¹⁹F/¹H surface coil (Stark Contrast, Inc., Germany) was placed on the torso for transmit and receive. The ¹⁹F images of the heart were acquired using a conventional FLASH sequence in a total of 3.2 minutes scan time; the imaging parameters were TR/TE=500/6 ms, number of averages 12, FA=90°, slice thickness 4 mm, NS=20, FOV=34×34 cm², and matrix size 64×32. For anatomical reference, co-registered ¹H TrueFISP images were collected with parameters TR/TE=164/1.2 ms, NA=1, FA=55°, slice thickness 4 mm, slice spacing 5 mm, NS=20, FOV=24.4×34 cm², and matrix size 256×184.

Ex vivo ¹⁹F MRI: After the *in vivo* experiment, the animal was sacrificed and the heart was fixed for high-resolution *ex vivo* MRI. The fixed heart was placed in a Bruker 7 T horizontal bore scanner with a 72 mm bird-cage coil that could be tuned to either ¹⁹F or ¹H. For ¹⁹F imaging, a MSME sequence was used with parameters TR/TE=2000/10 ms, NA=16, slice thickness 2 mm, number of slices 49, FOV=8×8 cm², matrix size 256×128, and resolution 0.31×0.62 mm². Co-registered anatomical ¹H images were acquired using MSME with the same parameters as for ¹⁹F, except NA=1. The ¹⁹F/¹H data were rendered using Amira (VSG, MA) software.

Results

Fig. 1 shows representative ¹⁹F/¹H MRI images of the swine heart. The ¹⁹F signal (hot-iron scale) is visible in the apical-lateral region of the heart at the putative site of MI. Previously, it has been shown that ¹⁹F emulsion droplets co-localize with the macrophages/monocytes (1-2). The *in vivo* SNR of ¹⁹F images was ~18 at 3 Tesla with 3.2 minutes of scan time. High resolution *ex vivo* ¹⁹F/¹H images acquired at 7 Tesla confirmed the macrophage infiltration mainly to the later wall of the LV (Fig. 1b). No obvious ¹⁹F signal was observed in the remote zone.

Conclusions

In this study, we evaluated *in vivo* ¹⁹F MRI methods in a clinical setting to localize inflammation loci induced by myocardial infarction. These methods were effective in displaying the infarcted region regions. Our results indicate that ¹⁹F imaging on a clinical scanner is feasible to visualize recent MI. The use of the PFC agents have the advantage that the uptake is predominantly by macrophages, which is

a Anterior RV LV

Fig 1. MRI images of myocardial inflammation in MI porcine model using PFC emulsion. (**a**) A composite *in vivo* ${}^{19}\text{F}{}^{11}\text{H}$ scan shows the inflammation regions. The ${}^{19}\text{F}$ signal is shown in hot-iron scale. The ${}^{19}\text{F}$ image SNR was ~18. Panel (**b**) shows a 3D rendering of an *ex vivo* MRI scan at 7 T of the same heart after being fixed, where the ${}^{19}\text{F}$ is in pseudo-color and the ${}^{11}\text{H}$ is in grayscale.

only present in recent infarcts, thus providing a well-defined signal of known biological origin that can be quantified against a null background. Image data of this nature will enable precise delivery of biological therapeutics by DLVI.

Acknowledgement

We acknowledge NIH grants P41 EB001977 and R41 HL116014.

References

- 1. Noth, Artif Cell Blood Sub, 25:243-254, 1997
- 2. Flogel, Circulation, 118:140-148, 2008