NEW APPROACHES IN B₁-MAPPING COMPENSATION FOR *IN VIVO* QUANTITATIVE ¹⁹F MR MOLECULAR IMAGING USING UTE BSSFP

Matthew J Goette¹, Todd A Williams¹, John S Allen¹, Jochen Keupp², Gregory M Lanza¹, Samuel A Wickline¹, and Shelton D Caruthers¹ ¹C-TRAIN, Washington University in St. Louis, St. Louis, MO, United States, ²Philips Research Europe, Hamburg, Germany

Target Audience: Basic researchers interested in quantitative molecular imaging, particularly of targeted contrast agents and non-proton agents, as well as imaging scientists studying applications of B_1 mapping.

Purpose: Quantitative MR molecular imaging allows for the detection of targeted contrast agents to diagnose disease states and monitor response to therapy, such as angiogenic therapy in peripheral vascular disease¹ and anti-angiogenic therapy in atherosclerosis and cancer² with $\alpha_v\beta_3$ -integrin targeted perfluorocarbon (PFC) nanoparticles. Recently, ¹⁹F MR using a ¹⁹F/¹H dual-tuned RF coil has been utilized to directly image and quantify the fluorinated core of these PFC nanoparticle (NP) emulsions³. Ultra-short echo time (UTE) balanced steady state free precession (bSSFP) sequences have been shown to be much more sensitive to ¹⁹F imaging agents than other techniques⁴. However, low concentrations of these fluorine agents in the body, even in the absence of any physiological background signal, in conjunction with varying RF coil sensitivity profiles (i.e. B₁-field inhomogeneities) raises obstacles to optimized imaging and accurate quantification⁵. This study presents a strategy to more accurately quantify the sparse ¹⁹F signal from PFC NP emulsions with a ¹H image-based Actual Flip Angle (AFI)⁶ B₁-mapping correction to the ¹⁹F and ¹H images.

Methods: In accordance with institution-approved protocols, New Zealand White Rabbits (2 kg) were implanted with a VX2 adenocarcinoma tumor (2-3 cm) in the hind leg⁷. Angiogenesis imaging was performed 2 weeks post implantation (tumor size ~ 15 mm), under ketamine/xylazine anesthesia. An $\alpha_v\beta_3$ -integrin targeted perfluoro-15-crown-5-ether (PFCE: $C_{10}F_{20}O_5$) nanoparticle emulsion (20 vol%) was prepared as previously published⁸, and injected intravenously 3 hours before imaging. MR data were acquired on a 3.0 T clinical whole-body scanner (Achieva, Philips Healthcare, Best, The Netherlands) with a dual ¹⁹F/¹H spectrometer system and a dual-tuned transmit/receive single loop surface RF coil (7×12 cm). A simultaneous ¹⁹F/¹H 3D UTE bSSFP imaging sequence with Wong-type 3D radial readout trajectory⁹ was used with: 140 mm FOV, matrix 64³, isotropic voxel $\Delta x = 2.3$ mm, exBW = 4 kHz centered on PFCE peak, pBW = 400 Hz, $\alpha = 30^{\circ}$, TR/TE = 2.32/0.13 ms, Nyquist radius = 0.23, NSA = 56, 35 min scan time. The B₁ field was mapped using an Actual Flip-angle Imaging (AFI) sequence with: 140 mm FOV, 96² matrix, 15 4-mm slices, $1.4 \times 1.4 \times 0.6$ mm resolution, $\alpha = 70^{\circ}$, 2.8 min scan time. Using the flip angle map [AFI = $\alpha_{requested}/\alpha_{nominal}$] and a model of the SPGR signal [Eq. 1], a spatially-dependent calibration mask (ρ) was calculated [Eq. 2] in MATLAB (MathWorks, Inc., Natick, MA) and used to compensate the ¹H and ¹⁹F signal intensities of the SPGR molecular imaging sequence by dividing each image by ρ , pixel by pixel. Importantly, the same correction scheme was performed on the imaging slice that contained the fluorine standard (150 mM_{19F}) to which the bound nanoparticle ¹⁹F signal was compared for quantitation.

$$bSSFP = k \sin \alpha \sqrt{E_2} \frac{1 - E_1}{1 - E_1 E_2 - (E_1 - E_2) \cos \alpha} \quad [Eq. 1]; \ \rho = AFI * \sin(AFI * \alpha_{nom}) \frac{1 - E_1}{1 - E_1 E_2 - (E_1 - E_2) \cos(AFI * \alpha_{nom})} \quad [Eq. 2]; \ E_1 = e^{-TE/T_1}; \ E_2 = e^{-TE/T_2}$$

Results and Discussion: PFC NP targeted the tumor neovasculature, providing localized ¹⁹F signal as expected. Figure 1 displays the uncorrected (a) and corrected (d) ¹H images with the ¹⁹F signal superimposed, using the AFI B₁ map (b) and Eq. 2 to calculate a calibration mask (c). After correction, the ¹H signal intensity profile as a function of distance from the surface coil (located at right) is improved. After the same correction to the ¹⁹F signal, the measured concentration of nanoparticles when compared to a standard was $25.5 \pm 2.5 \text{ mM}_{19F}$, versus $20.0 \pm 2.3 \text{ mM}_{19F}$ before correction. This *in vivo* application of B₁ correction for UTE bSSFP acquired ¹⁹F/¹H data displays the applicability of such a technique in the preclinical setting, which corroborates with phantom and *in vitro* results. While these data were acquired with, and benefits from, dual-tuned RF coils, this technique of using ¹H AFI data to correct ¹⁹F molecular imaging data would work with multiple single-tuned coils if the B₁ fields for the two nuclei are the same.

Figure 1. a: Uncorrected ¹H image with ¹⁹F overlay (mM_{19F}). b: AFI B₁ map (% Actual/Requested Flip Angle). c: Calibration mask p. d: Corrected ¹H and ¹⁹F images.

Conclusion: An image-based B₁-mapping correction can be used to correct signal intensities for simultaneously acquired ¹H and ¹⁹F images of angiogenesis in an *in vivo* rabbit model. This technique results in a more homogeneous ¹H image of the anatomy and facilitates measurement of bound $\alpha_v\beta_3$ -integrin targeted nanoparticles with ¹⁹F imaging, correcting for known B₁ inhomogeneities. Correction techniques such as this one are required to improve accuracy and repeatability of measurements of molecular imaging agents in preclinical and clinical trials, thereby facilitating translation of molecular imaging, and in particular ¹⁹F imaging using fluorinated nanoparticles, into the clinic.

References

- 1. Winter, et al. Magn Reson Med. 2010;64:369-376.
- 2. Lanza, et al. Eur J Nucl Med Mol Img. 2010;37: S114-S126.
- 3. Caruthers, et al. MedicaMundi. 2010;54(2): 5-13 (2010).
- 4. Keupp, et al. Proc Intl Soc Mag Reson Med 18. 2010.
- 4. Keupp, et al. Proc Intl Soc Mag Reson Med 15. 2007.
- 5. Yarnykh. Magn Reson Med. 2007;**57**(1):192-200.
- 6. Hu, et al. Int J Cancer. 2007;**120**(9):1951-1957.
- 7. Keupp, et al. Mag Reson Med. 2011;66(4): 1116-1122.
- 8. Wong, et al. Mag Reson Med. 1994; 32:778.