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Introduction: How important is disorder in the packing geometry of an axonal fiber bundle from the standpoint of a diffusion measurement? Here 
we show that the randomness in fiber arrangement in a bundle crucially affects diffusion in the extra-axonal space, which can have implications for 
both pulse-gradient1 and oscillating gradient methods2 of characterizing white matter fiber integrity. Specifically, we focus on the time-dependence of 
the diffusion coefficient, D(t), in the extra-axonal space by diffusion measurements in a phantom made of randomly packed parallel aligned 
impermeable fibers and Monte-Carlo simulations. We show that D(t) transverse to a fiber bundle has a logarithmic singularity at long diffusion 

times,  ≡ ≃ + ln ⁄ ,   ≫ .    (1) 

This singularity is a consequence of short-range disorder in the fiber packing. As 
axons are ~1μm in diameter, almost any measurement is in long-time limit, and 
hence the above singularity may significantly affect the interpretation of time-
dependent diffusion-based methods of evaluating fiber integrity, as described below.  
Methods: Theory. As recently shown3, the power law exponent ϑ describing the 
approach of the tortuosity limit D∞ can yield information about the type of disorder 
in a system.  This exponent appears both in the instantaneous diffusion coefficient 
Dinst(t), and in OGSE  ≡ = + + ⋯     ⟺     = + | | + ⋯    (2) 

In two dimensions, ϑ = 1 for the most commonplace random packing characterized 
by short-ranged disorder in fiber placement3. The integration3,4,5 of Dinst(t) up to t 
and dividing by t yields the ln t /t behavior of D(t) in Eq. (1) above. Conversely, for 
any more ordered arrangement (e.g. periodic), ϑ >1, yielding D(t)~ D∞+c/t. Hence, 

in a D(t) measurement, the effect of disorder is in the extra ln t  factor.  
Phantom Construction. The diffusion phantom for this study was constructed with approximately 
195,000 Dyneema® fibers tightly held together with a shrinking tube measuring 8 cm long. The 
fibers are 17±2.6 μm in diameter, ultrahydrophobic and impermeable to water. The fiber bundle 
was suspended in a 1.5 L plastic bottle filled with a distilled water solution of 0.09% w/v NaCl to 
reduce B1 field inhomogeneities. 
MRI Measurements.  Imaging was performed at 15°C on a 7T Siemens clinical MRI scanner 
using a 28 channel knee coil. DTI was carried out using a STEAM sequence which allows for 
long diffusion times while minimizing echo attenuation caused by T2 relaxation.  Twenty five 
measurements were performed at b values of 0 and 500 in 20 directions, each with TE of 57 ms 
and TM ranging from 10ms to 1000 ms, corresponding to diffusion times, t, of 38.5 ms to 1028.5 
ms. Three slices of resolution 3 mm × 3mm × 10 mm were used.  The fiber bundle was placed 
parallel to the B0 field to eliminate the possibility of internal field inhomogeneties. 
Results: The DTI eigenvalues are plotted vs t in Fig. 1a. We focus on the second eigenvalue, D(t) 
= λ2. Fig. 1b shows a plot of D(t)−D∞ vs t on a log-log scale, along with a fit of D(t)−D∞ to c 
ln(t/t0)/t (black dashed line) and a fit to c/t (red dashed line), showing clearly that the c/t fit is 
insufficient to properly describe the data.  Fig. 2a and b show the same D(t) data plotted with 
respect to 1/t and ln(t/t0)/(t/t0), respectively.  In Fig. 2a, a slight curve can be seen in the data 
indicating the logarithmic singularity.  Fig. 2b shows that the bend is removed when plotted with 
respect to ln(t/t0)/(t/t0), t0 = 11ms.  Fig. 2c and d show Monte Carlo simulation data using a free 

diffusion coefficient of 2 μm2/s, and fiber size distribution centered around 17 μm, with t0 = 7.3ms, in agreement with experiment.   
Discussion: Implication for PGSE: The diffusion restricted inside axons, giving the 1/t contribution, is used1 to probe internal diameter distribution. 
However, as we have shown, the t-dependence in the extra-axonal space is more relevant, as ln(t)/t eventually exceeds 1/t in long-t limit. Hence, 
modeling the disorder in extra-axonal space is essential for interpreting such measurements. 
Implication for OGSE: The non-analytic ln(t)/t in D(t) translates into linear behavior in |ω| (a sharp kink in D(ω) for near ω = 0). Indeed, such sharp 
non-parabolic behavior is clearly seen is recent OGSE measurements in brain [Fig 6 of ref 6], which may indicate 2-dimensional disorder in 
extracellular space. For ordered arrangements, or for confined diffusion (e.g. inside axons), the 1/t behavior in D(t) translates into ω2 in D(ω).2,4,7 This 
parabolic behavior will be less relevant than |ω| at small ω and the effect of packing disorder will again dominate over that of confined water. 
Conclusions: The logarithmic singularity in two-dimensional diffusion has been demonstrated for a first time as a hallmark of disordered packing 
geometries. This singularity dominates the time-dependence of diffusion across axonal fiber bundles and should be included in any quantification 
scheme for adequate fiber characterization. 
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Figure 2: a) This singularity is also manifest in the 
“bend” in D(t) vs. 1/t using λ2(t) from Fig.1.  b) The 
logarithmic “bend” straightens up when D(t) is 
replotted with respect to ln(t/t0)/t. c) and d) The same 
as for a and b, but with MC simulated data. 

Figure 1:  a) Diffusion tensor eigenvalues λ1 > λ2 > λ3 measured in
the phantom, as function of diffusion time t. b) Taking D(t)=λ2, we
fit it to Eq (1), and show the difference D(t)-D

∞
 in log-log scale. The

systematic slope change relative to the 1/t fit is a hallmark of
logarithmic singularity.  
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