T1 Estimation for Aqueous Iron Oxide Nanoparticle Suspensions Using a Variable Flip Angle SWIFT Sequence

Luning Wang¹, Curtis Corum², Djaudat Idiyatullin², Michael Garwood², and Qun Zhao¹

¹Department of Physics and Astronomy, University of Georgia, Athens, GA, United States, ²Department of Radiology, University of Minnesota, Minneapolis, MN,

United States

Introduction: Recently studies demonstrated that Super-paramagnetic iron oxide (SPIO) nanoparticles could be applied to detection and hyperthermia treatment of cancers and cell tracking [1,2]. Quantification of SPIO nanoparticles is usually accomplished by T_2^* mapping or quantitative susceptibility mapping (QSM) using a gradient-recalled echo (GRE) sequence. However, as the SPIO concentration increases, MR signal loss and image distortions pose serious obstacles to accurately estimate the concentration of SPIO nanoparticles. The <u>SW</u>eep Imaging with Fourier Transformation (SWIFT) sequence has been designed to minimize short T_2^* signal loss caused by SPIO nanoparticles [3,4]. Recently Chamberlain et al. [5] proposed a Look-Locker saturation recovery method integrated with the SWIFT to measure T_1 . The SWIFT sequence uses a low flip angle frequency-modulated hyperbolic secant pulse in an inherently spoiled steady state, provides the opportunity to derive a T_1 map through measurements conducted with variable flip angles (VFA). The main problem of VFA methods is ambiguity of the solution in presence of radiofrequency field (B_1) inhomogeneities. To overcome this difficulty, we utilize a birdcage coil that provides better B_1 field homogeneity than a surface coil. In addition, for accuracy

we use a scheme of small step-size, multiple flip angles. In this work, we propose to utilize the VFA-SWIFT sequence to measure T_1 of ferrofluids with iron concentrations from 0.65 to 6.48 mM/mL. As a comparison, T_1 values were also quantified using the GRE and inversion recovery fast spin echo (IR-FSE) sequence.

Theory: For the SWIFT sequence, the magnetic field variation resulting from the applied gradient field is generally large compared to other potential contributions, such as magnetic field inhomogeneity and magnetic susceptibility differences, so their effects are minimal in acquired images. Additionally, SWIFT images are minimally influenced by transverse relaxation, since the dead time between signal excitation and acquisition is usually much shorter than T_2^* values. Under these circumstances, a region of interest (ROI) in a SWIFT image is immune to signal loss due to T_2^* values of the scanned subject [6] if signal pile up artifacts are included in the ROI. This leads to T_2^* independent signal intensity for the ROI in the following form: $s=M_0sin (1-E_1^{SWIFT})/(1-E_1^{SWIFT}cos)$ [3,4]. Therefore, with a fixed repetition time (*TR*), a T_1 estimate can be obtained according to $[s()/tan]+M_0(1-E_1^{SWIFT})$, where the slope E_1^{SWIFT} can be numerically solved through a linear least-square fit. T_1 can then be estimated from the natural logarithm of E_1^{SWIFT} [7].

Methods: A SPIO phantom was made of 11 vials with different iron concentrations (see Table 1). The MR experiment was performed on a 7 Tesla Varian Magnex small animal scanner (Agilent Technologies, Santa Clara, CA) that provides a maximum gradient strength of 600mT/m. The phantom was vertically placed in the

center of a 7.2 cm transmit/receive birdcage coil. 3D radial SWIFT images were acquired with bandwidth=62.5 kHz, TR=8 ms, FOV=80³ mm³, 32,000 spokes, matrix=256³, = 10°, 12°, 16°, 18°, 20°, 24°, 28°, and 32°. Additionally, 2D GRE steady state scans were performed with the following parameters: TE/TR=2.75/37 ms, bandwidth=50 kHz, FOV=80² mm², matrix=128², average=8, one coronal slice, and the flip angles were varied from 10° to 32° with a step size of 2°. The IR-FSE experiment utilized ETL=8, effective TE=8.92ms, TR=4s, FOV=80²mm², matrix size = 128², average = 1, one coronal slice, TI=100~1600ms with a step size of 100ms. Here, the shortest TE achievable for the 7T scanner (given the matrix size and FOV) were selected to minimize signal loss caused by the T_2 * decay for both GRE and IR-FSE scans. A binary mask was created to remove signals outside the phantom on the T_1 maps.

Results: Figs. 1(a) and 1(b) display the magnitude images acquired using SWIFT and GRE sequences with 10° flip angle. Fig. 1(c) shows the IR_FSE image with *TI* equal to 800 ms. Vials with different iron concentrations were labeled in Fig. 1(a). The vials with higher concentrations of SPIO nanoparticles appeared brighter than those with lower concentrations. Line-broadening artifacts become more apparent as the concentration increases beyond 4.54 mM (vials 8~11) in Fig. 1(a). For the GRE image, when the vials contains more than 2.59 mM iron (vial 5~11), T_2^* decay becomes strong and dominant, resulting in significant signal loss and image distortions. In summary, the SWIFT sequence provided positive contrast for the SPIO nanoparticle solutions, whereas GRE and IR-FSE yielded negative contrast. Figs. 1(d~f) show the estimated T_1 maps resulting from the (a) SWIFT, (b) GRE and (c) IR-FSE acquisitions. According to the figure, both SWIFT and GRE sequences resulted in a good T_1 estimation when concentrations were lower than 3.89 mM (vial 1~6). T_1 of ferrofluid in vials 8~11 could only be obtained from Fig. 1(a). The IR-FSE failed to estimate T_1 of vials 2~11. This indicates that the SWIFT sequence is more suitable for measuring T_1 of ferrofluid at high concentrations. As seen from the T_1 maps, T_1 was decreased and the line-broadening artifacts become significant, along with the increase of concentrations.

Fig. 2 (a) and (b) present linear fitting of the relaxation rate R_1 to the various iron concentrations for the SWIFT and GRE sequences. According to the fit, the specific relaxivity (r_1) of the ferrofluid was 0.907 s⁻¹•mM⁻¹ using the SWIFT method under 7 Tesla. In Fig. 2(b) by using the first seven data points, the resulting

Figure 1. (a) SWIFT and (b) GRE images ($=10^{\circ}$), and (c) IR-FSE (*TI*=800ms) are illustrated in the first row. Vials are labeled from 1 to 11 based on their concentrations from low to high. T_1 maps in the second row were estimated by using the (d) SWIFT, (e) GRE, and (f) IR-FSE datasets.

a Concentration [mM] b Concentration [mM]Figure 2. Concentrations of the different vials are linearly fitted to their R_1 values estimated by the (a) SWIFT and (b) GRE (without the last four data points) based methods.

Vial	Iron	SWIFT	GRE	IR-FSE
1	0	1358 ± 251	1064 ± 41	952 ± 655
2	0.65	1092 ± 95	929 ± 48	729 ± 239
3	1.30	679 ± 34	622 ± 50	-
4	1.94	519 ±15	426 ± 77	-
5	2.59	431 ± 9	391 ± 106	-
6	3.24	357 ± 8	299 ± 116	-
7	3.89	275 ± 7	-	-
8	4.54	181 ± 5	-	-
9	5.18	201 ± 9	_	-
10	5.83	192 ± 8	-	-
11	6.48	165 ± 9	-	-

Table 1. Iron concentrations (in [mM/mL]) of the different vials are listed in the second column. The T_1 values (in [ms]) estimated by the SWIFT, GRE and IR-FSE based methods are presented in the last three columns.

relaxivity was equal to $1.042 \text{ s}^{-1} \text{em}\text{M}^{-1}$, close to the SWIFT result. The R² values for both fittings approximated to 0.95. However, for the GRE result in the Fig. 2(b), standard deviations of the estimated R_1 increased significantly along with the increase of concentrations.

Table 1 summarizes the quantitative T_1 estimates for the various iron concentrations using the SWIFT, GRE and IR-FSE methods. The first two columns list the vial numbers and their iron concentrations, while the estimated T_1 are given in the last three columns. Note that only SWIFT can estimate T_1 for all the concentrations. Additionally, in the presence of high concentrations, standard deviations of the T_1 values measured by SWIFT are still relatively small. The highest concentration at which the GRE method can still measure T_1 is about 3.24 mM, but with a large standard deviation.

Conclusions: A VFA-SWIFT sequence was implemented to quantify T1 of SPIO nanoparticle solutions, compared with the GRE sequence. While the GRE and IR-FSE sequences failed to estimate the T1 at high iron concentrations, the VFA-SWIFT presented a good linear relationship between the relaxation rate R_1 and iron concentrations, with a relaxivity of approximately 0.907 s-1•mM-1 at 7 Tesla.

Acknowledgements: The research was funded by grants NIH P41RR008079, P41EB015894, R21CA139688, KL2RR033182, and S10RR023706. In addition we thank Brian Hanna and Michael Tesch for continued collaboration in development of the SWIFT package.

References: [1] Richards J.M. et al. Circulation Cardiovascular imaging 2012;5(4):509-517. [2] Zhao Q. et al. Theranostics 2012;2:113-121. [3] Idiyatullin D. et al. J Magn Reson 2006;181(2):342-349 [4] Idiyatullin D. et al. J Magn Reson 2008;193(2):267-273. [5] Chamberlain R. et al. ISMRM proceeding, 2012. [6] Zhou R. et al. Magnetic Resonance in Medicine 2010;63(5):1154-1161. [7]Treier R. et al. Magnetic resonance in medicine 2007;57(3):568-576.