Numerical validation of two-component T2* mapping for cartilages in human knee

Yongxian Qian¹, Tiejun Zhao², and Fernando E. Boada³

¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States, ²MR R&D Collaborations, Siemens Healthcare USA, Pittsburgh, PA, United States, ³Radiology, University of Pittsburgh, New York, NY, United States

INTRODUCTION

Two-component T_2^* mapping on cartilages in the knee has potential to show variations of short- T_2^* relaxation which has potential to be sensitive to disruption of collagen fibers (1, 2). As signal-to-noise ratio (SNR) of MR imaging is limited in clinical setting (e.g., SNR ~ 90 at 3T), concerns exist on the performance of two-component T_2^* mapping on human, such as the ability to separate two components from a single decay of T_2^* relaxation and the accuracy of two-component T_2^* fitting. Numerical validation, which provides flexibility in setting up combinations of two T_2^* components of interest, was here employed to address these concerns.

METHODS AND EXPERIMENTS

To investigate the separation of two T_2^* components from a signal decay, a mono-exponential T_2^* decay, $s1(TE)=A^*exp(-TE/T_2^*)$, was used to optimally approximate to a bi-exponential T_2^* decay, $s2(TE)=a_{21}*exp(-TE/T_{21})+a_{22}*exp(-TE/T_{22})$, with $T_{21}<T_{22}$ and

 $a_{21}+a_{22}=1$. The difference between the two decays, $E=||s_1-s_2||/||s_2||$, was used to measure the ability of separation. To validate the accuracy of two-component T_2^* fitting, a numerical model was created, with a_{21} linearly increasing from 0 to 100 % while a_{22} linearly decreasing from 100 to 0 %. Gaussian noise, $N(0, \sigma^2)$, was added to $s_2(TE)$. A customer-developed, NNLS-based, automatic iterative algorithm was employed to perform two-component T_2^* fitting to the noisy $s_2(TE)$. In the experiments for separation of two components, a_{21} and a_{22} were fixed to (0.5, 0.5) or other values of interest, while T_{21} and T_{22} were increased at a step of 1.0 ms. For the two-component T_2^* fitting, a rectangular region of 30×1000 points (wide $\times \log$) was used, with a_{21} or a_{22} changing along the width only. Echo time (TE) was chosen at 54 locations between 0.6-70 ms (Fig.1) based on an optimized protocol for knee imaging. SNR=1/ σ .

RESULTS AND DISCUSSION

The root mean squared (RMS) error of mono-exponential decay fitting to the bi-exponential at $(a_{21}, a_{22}) = (0.5, 0.5)$ is shown in Figure 2. This error varies with the combination of T_{21} and T_{22} . At the point of $(T_{21}, T_{22}) = (4, 22)$ ms, which represents typical short- and long- T_2^* values in cartilages in human knee, the RMS error fell in the yellow-red regions and is larger than 0.8% (Fig. 2). This suggests that short- and long- T_2^* relaxations are able to be separated when SNR is appropriate, as shown in Figures 3 & 4. It was also

observed that the pattern of the RMS error was changing with the combination of (a_{21}, a_{22}) , such as (0.25, 0.75) and (0.75, 0.25), leading to a pattern favorable to T_{22} or T_{21} . The validation of two-component T_2^* fitting was shown in Figures 3 & 4. The maps of the fitted a_{21} or a_{22} demonstrated consistency of the fitting across SNR from 90 to 200, 500 and the infinite (Fig. 3), suggesting that fitting for the component intensity fraction $(a_{21} \text{ or } a_{22})$ was reliable in clinical setting of SNR=90. The

with the component fraction a_{21} or a_{22} (Fig. 4); the higher the intensity fraction, the less the variation, and of course, the higher the SNR, the less the variation. At SNR = 90, change of T_{21} (ΔT_{21}) <10% when a_{21} >14%, and ΔT_{22} <10% when a_{22} >20%. These results suggest that, in clinical setting of SNR=90 with 54 TE points, short- T_2 * time has an underestimate by less than 10% when intensity fraction is larger than 14%.

fitted T₂₁ or T₂₂ value showed a variation

REFERENCES: [1] Lattanzio PJ, et al. MRM 2000; 44:840-851. [2] Qian Y, et al. MRM 2012 (Epub, early view).

Fig. 4. The fitted value (mean±SD) of (a) short- and (b) long-T₂* time at T₂₁=3ms and T₂₂=30ms, with noise trials of 1,000 at each point.