CUBEQUANT T1RHO, QDESS T2, AND CONES SODIUM MEASUREMENTS ARE SUFFICIENTLY REPRODUCIBLE FOR *IN VIVO* CARTILAGE STUDIES

Caroline D Jordan^{1,2}, Uche D Monu^{1,3}, Emily J McWalter¹, Ronald D Watkins¹, Weitian Chen⁴, Neal K Bangerter⁵, Brian A Hargreaves¹, and Garry E Gold^{1,6} ¹Radiology, Stanford University, Stanford, CA, United States, ²Bioengineering, Stanford University, Stanford, CA, United States, ³Electrical Engineering, Stanford University, Stanford, CA, United States, ⁴Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States, ⁵Electrical & Computer Engineering, Brigham Young University, Provo, UT, United States, ⁶Orthopaedic Surgery, Stanford University, Stanford, CA, United States

PURPOSE: Osteoarthritis (OA) causes disability for 10% of the population over 60 and costs up to \$60 billion each year¹. Quantitative MRI parameters such as T_{1_0} , T_2 , and sodium have been shown to vary in OA patients or specimens by an increase of 30-120% for T_{1_0} , an increase of 5–50% for $T_2,$ or a decrease of 20-40% in sodium concentration^{2,3}. $T_{1\rho}$ relaxation times have shown correlation to the depletion of proteoglycan (PG) content⁴, T₂ relaxation times have shown correlation to collagen structure and water content in cartilage⁵, and sodium has been shown to correlate highly with glycosaminoglycan (GAG) in cartilage³. CubeQuant⁶ has been recently shown to calculate $T_{1\rho}$, and Quantitative Double-Echo Steady-State (qDESS) has recently been shown to measure T₂ without diffusion effects while also providing useful morphological images to distinguish fluid and cartilage^{7,8}. In this work, we assess the reproducibility of the 3D quantitative MR techniques T₁₀ mapping using CubeQuant, T₂ mapping using qDESS and 3D cones sodium MRI.

METHODS: Acquisition: Five healthy volunteers (5M, mean age 28.8±5.5 years, mean BMI 23.3±3.8) were each scanned 24 hours apart for short-term reproducibility and approximately 4.5 months later for long-term reproducibility. IRB approval and informed consent were obtained. Images were acquired using a GE Discovery MR750 3T scanner (GE Healthcare,

Waukesha, WI), a transmit-receive 8-channel knee coil (Invivo Inc., Gainesville, FL) and a custom-built proton/sodium dual-tuned coil.

Scan Parameters: CubeQuant $T_{1\rho}$ maps were acquired using a magnetization-prepared pseudo-steady-state 3D fast spin echo acquisition with 500 Hz spin-lock frequency pulse⁶. T₂ maps were calculated from qDESS images⁷. Sodium images were obtained using a fast gradient-spoiled sequence with the 3D cones k-space trajectory^{9,10} (Table 1).

Analysis: $T_{1\rho}$ and T_2 maps were generated using OsiriX and sodium signals were measured and normalized to the popliteal artery from a single slice in the lateral and medial compartments in the following 2D ROIs: anterior, central, and posterior femoral cartilage and anterior/posterior tibial cartilage as in Fig. 1¹¹. The coefficient of variation (CV) was calculated for each individual and ROI, and subsequently the root-mean-square CV (CV_{RMS}) for each ROI, which demonstrates the reproducibility of a technique¹².

Definitions of Variability: We define short-term intra-subject variability to be the variability from scanning the same subject on consecutive days, and long-term intra-subject variability to be the variability from scanning the same subject several months apart. The inter-observer variability is due to ROI differences between observers and intra-observer variability is due to ROI differences between different segmentation sessions. Adjacent slice variability is the variability between consecutive slices.

<u>RESULTS</u>: The short-term and long-term intra-subject reproducibility amongst the 10 ROIs, as expressed by the CV_{RMS}, ranged between 2.7-8.6% and 4.6-9.0% for T_{1_p} mapping using CubeQuant, between 2.4-9.8% and 4.4-13.8% for T_2 mapping using qDESS, and between 5.2-13.8% and 4.6-16.0% for 3D cones sodium MRI, respectively (Figure 2).

DISCUSSION & CONCLUSION: The average CV_{RMS} values are comparable to other published literature CVs, which may range between 7-19% for $T_{1\rho}$ mapping¹³, 4-14% for regional T_2 mapping¹³, and 6.9-11.3% for sodium sequences at $3T^{14}$. These CV_{RMS} values are lower than most previously measured changes in OA patients, suggesting that CubeQuant $T_{1\rho}$, qDESS T_2 and 3D cones sodium MRI may be sufficiently reproducible for detecting changes resulting from osteoarthritis.

ACKNOWLEDGEMENTS: Arthritis Foundation, GE Healthcare, NIH.

REFERENCES: 1. Adv Drug Deliv Rev 2006; 58:150-167. 2. JMRI 23:547–553 (2006). 3. Radiol. 2004:231:900–905. 4. Acad Radiol 2002; 9(12):1388-94. 5. Radiol. 2000; 21:259-66. 6. #231. ISMRM 2011. 7. MRM 67:1086–1096 (2012). 8. MRM 62:544–549 (2009). 9. JMRI 32:446–451 (2010). 10. MRM 2006;55: 575–582. 11. Invest Radiol. 2008; 43(11): 782–788. 12. Osteopor. Int (1995) 5:262-270. 13. Radiol. 2011;258:832–842. 14. MRM 2012 Sep;68(3):841-9.