
 
Figure 2. Accuracy test shows that the proposed parallel inverse Gauss-Newton 
method has higher precision compared to FSL, SPM and AFNI. The average 
RMS errors of 10 different 120-frame time-series with different motion 
parameters are shown. Our proposed parallel inverse Gauss-Newton method 
gives the lowest error rate for the majority of the time frames and datasets. 
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INTRODUCTION Motion correction across time frames is of great 
importance for quantitative analysis of time-series images, such as in 
functional magnetic resonance imaging (fMRI). Especially with the recent 
development of the optogenetic functional magnetic resonance imaging 
(ofMRI) [1-5] technology, which enables excitation/inhibition with 
temporal precision leading to numerous control parameters to sort through, 
high-speed  motion correction that can be integrated into a high-throughput 
system is of crucial importance to accelerate scientific discovery. To enable 
such process, it is critical for motion correction to be conducted in real-time 
while leaving sufficient time for additional computationally intense 
processes such as iterative reconstruction and automatic segmentation to 
also be integrated for real-time processing. Although many fast and 
accurate motion correction methods have been developed so far, further 
improvement in speed and accuracy is necessary for efficient ofMRI 
studies. Here we propose a new GPU based inverse Gauss-Newton (IGN) 
motion correction method, which is able to reduce the traditional 
computation cost from O(N2) to O(N) [6]. With highly optimized 
computations, the IGN method performs a 128×128×23 matrix size 3D 
fMRI registration in approximately 5.39 ms with higher accuracy than 
currently available methods.  

METHODS The proposed IGN motion correction cost function 
iteratively computes least square error (LSE) of two images (template T 
and source image I). In each iteration, a transform matrix M that 
registers the template to the source image is calculated through Gauss-
Newton linearization. The source image is then transformed by the 
inverse of the M matrix. The advantage of this method is the Hessian 
matrix computed from the template image is fixed in all iterations and 
thus can be computed beforehand. This strategy dramatically reduces 
the computation cost from O(N2) to O(N). We implemented the IGN 
method on a GPU based parallel workstation (Fig. 1). Many GPU 
specific hardware features, such as texture caching and hard-wired 
interpolation, are utilized for the highest efficiency.  Multi-resolution 
optimization strategy is also designed to increase the robustness of the 
algorithm.   
 

RESULTS AND DISCUSSION We tested the speed, accuracy and robustness of the 
proposed IGN method. We compared the result with currently available methods 
including AFNI [7], SPM [8] and FSL [9]. In the speed test, our IGN method shows the 
highest speed that can complete a 3D fMRI registration in 5.39 ms in average while the 
second fastest method, AFNI is almost 10 times slower (AFNI 51.31 ms, SPM 383.39 
ms, FSL 266.76 ms). In the accuracy test, a 120-frame fMRI phantom dataset with 10 
distinct sets of known motion parameters are designed. As shown in Fig. 2, our proposed 
IGN method shows the lowest averaged RMS error rate 0.07 mm (AFNI 0.10 mm, SPM 
0.20 mm, FSL 0.26 mm). The phantom and real ofMRI data analysis results also show 
that the proposed IGN method gives the highest coherence value and the largest 
activation volume. An example is shown in Fig. 3. As demonstrated, the proposed fast 
IGN motion correction method (5.39 ms) combined with the 7.41 ms parallel acquisition 
and reconstruction method [10] leaves ample room for additional computationally 
intense processes to be integrated within the acquisition TR (750ms), which marks a key 
step forward towards the design of high-throughput ofMRI systems.  
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Figure 1. The proposed parallel inverse Gauss-Newton algorithm. Because 
the Hessian matrix (H) is a constant for the inverse Gauss-Newton algorithm, 
the calculation is more efficient compared to the original Gauss-Newton 
algorithm [6], without compromising accuracy. 

 
Figure 3. Activation map before and after the parallel inverse 
Gauss-Newton motion correction demonstrates increased 
activation volume and coherence value after the proposed 
motion correction. 
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