Dual-echo diffusion-weighted EPI for better sensitivity to acute stroke

Samantha J Holdsworth¹, Stefan Skare², Kristen Yeom¹, Michael U. Antonucci¹, Jalal B Andre³, Jarrett Rosenberg¹, Matus Straka¹, Nancy J Fischbein¹, Greg Zaharchuk¹, and Roland Bammer¹

¹Department of Radiology, Stanford University, Palo Alto, CA, United States, ²Karolinska Institute, Clinical Neuroscience, Stockholm, Sweden, ³Department of Radiology, University of Washington, Seattle, WA, United States

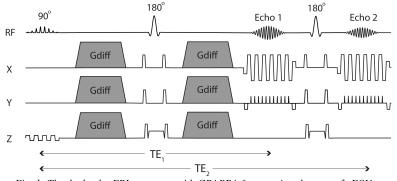


Fig. 1: The dual-echo EPI sequence, with GRAPPA factor = interleaves = 3, FOV = 24cm, matrix = 192^2 , slthk/gap = 5mm/1.5mm, 24 partial Fourier overscans, TE_I/TE_2 = 48/105ms, 1b0/4directions, $b=1000s/mm^2$, TR=3s, scan time 2:30min. With the set of imaging parameters used here, this approach does not increase the scan time compared to the single echo alternative since Echo 2 fills in the sequence dead-time.

DWI data were acquired on 50 patients suspected of stroke using a 1.5T GE scanner and 8-ch head coil. Three radiologists reviewed the echoes using the routine vendorsupplied DWI as a reference. Images were graded on lesion conspicuity and diagnostic confidence on the following Likert scale: 1–nondiagnostic, 2–poor, 3–acceptable, 4– standard, 5–above average, 6–very good, 7–outstanding. R_2 maps calculated from the two echoes were evaluated for potential complementary information. Tests for differences in ratings between Echo 1 and Echo 2 were done with a two-tailed Wilcoxon signed-rank test.

<u>Results:</u> Echo 2 was unanimously favored over Echo 1 for the evaluation of acute infarcts. Lesion conspicuity and diagnostic confidence were rated better for Echo 2 over Echo 1 (mean values of 6.5/4.9 and 5.9/5.4, respectively p<0.0001). **72 more lesions were found on Echo 2 across 34 patients diagnosed with acute stroke than on Echo 1.** 93% of these were deemed as acute infarct on ADC, 4% were too small to assess, and 3% were non-restricting chronic lesions. Echo 2 was predicted to have changed the overall radiological impression in 20% of cases; and to have impacted stroke workup in 16% of cases, and potentially influenced 32% of cases. As shown in **Fig. 3**, while the

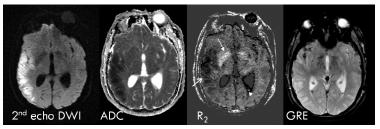


Fig 3: 69yr patient with vasospasm. The R_2 map brings out the hypointense signal associated with infarct (open arrow) as well as areas of hyperintense signal correlating with intraventricular hemorrhage(arrowhead) and basal ganglia calcification (closed arrow).

Target audience: Practitioners interested in improving diffusion lesion conspicuity in the setting of acute stroke. **Introduction:** Many diffusion-restricting lesions also have a prolonged T_2 value compared to the surrounding tissue. We hypothesize that one may improve lesion conspicuity in acute stroke patients with the use of a longer TE than in conventional practice by means of an accelerated dual-echo diffusion-weighted (DW)-EPI approach (**Fig. 1**). Echo 1 provides a high SNR image used to calculate the apparent diffusion coefficient (ADC), while Echo 2 can be used for enhanced conspicuity. Furthermore, relaxivity (R_2) maps can be calculated from the dual echo images to potentially reveal an additional source of image contrast. This study investigated the applicability of such a dual-echo sequence in the setting of acute stroke.

Methods: Dual-echo

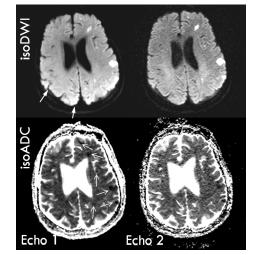


Fig. 2: Dual echo DWI and ADC images of a 66yr old embolic stroke patient.

DWI of Echo 2 has higher lesion sensitivity, the ADC of Echo 1 is the best candidate for confirming acute lesions. Echo 2 was also favored for ruling out stroke from regions of heightened coil sensitivity (closed arrows). The R_2 maps were also useful for detecting ischemic infarct, subarachnoid hemorrhage and basal ganglia calcification (**Fig. 3**).

Discussion: Longer TEs than those typically used can increase the diagnostic sensitivity of DWI. Given that the DWI from Echo 2 was more useful for lesion delineation and detection, we recommend that the TE should be exploited to draw attention to lesions, and that the accelerated dual-echo EPI DWI approach is a good candidate.

Conclusion: Contradicting the common teaching to use short echo times to avoid T_2 -shine through, the long TE of Echo 2 gives rise to DW images with superior conspicuity of diffusion lesions compared to DW images acquired at a shorter TE or conventional T_2 -weighted imaging alone: Echo 1 provides high SNR ADC maps for specificity in acute stroke, and the information from both echoes is a potential source of complementary information for the assessment of blood and mineralization products. In conclusion, using the minimum TE to achieve maximum SNR and avoid T2-shine through may result in increased identification of stroke-related lesions on DWI, and a dual-echo approach should be considered when protocoling DWI scans in stroke patients. Acknowledgements: NIH (2R01 EB00271108-A1, 5R01 EB008706, 5R01 EB01165402-02), the Center of Advanced MR Technology at Stanford (P41 EB015891), Lucas Foundation.