
Figure1: Image analysis. The subject image was linearly normalized, followed by 
LDDMM. The inverse transformation overlays the white matter parcellation map 
onto the original DTI image. Combined with white matter / cortical segmentation, the 
original images are segmented into 185 subregions [2-5]. 

Figure 2 (right): PCA plot (each 
symbol is one child) with respect to 
first three principal components 
based on volume and DTI-derived 
measures. Key: Purple: normal; 
Red: CP, GMFCSI; Blue: CP, 
CMFCSII; Green: CP, GMFCSIII. 
 
Figure 3 (below): Averaged inter-
cortical parcel correlation 
coefficients map of controls (left) 
and CP group (right).  
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Target Audience: Pediatric neuroradiologists, pediatric neurologists, and neuroscientists interested in pediatric DTI and fMRI 
 

Purpose: Cerebral palsy (CP) is a heterogeneous group of disorders with different risk factors, causes, and prognoses. In CP, MRI provides important 
information about the severity and extent of multiple sites of brain injury, and is helpful for understanding pathogenesis and planning clinical intervention 
[1]. However, the highly variable nature of the location and extent of injuries make objective analysis challenging. Previously, to achieve a systematic 
description of brain injuries in CP, we applied quantitative atlas-based analysis to whole-brain MRI/DTI to extract anatomical features in two types of CP 
[2]. In the current study, as a further attempt to integrate multi-modal images systematically, we extended our atlas-based approach to MRI/DTI data by 
adding resting-state functional MRI (rs-fMRI). We parcellated the brain into 185 structures, obtained scalar measurements using population-based Z-
score for MRI/DTI and inter-parcel correlation coefficients for rs-fMRI. Then we used principal component analysis (PCA) to describe the characteristics 
of CP in a systematic and quantitative manner. 
 

Methods: We studied 23 children diagnosed as spastic-type CP (age 5.1-17.6 
years; mean 11.0 years; gross motor function classification system (GMFCS) 
score I-III), and 20 neurotypical children (age 2-13 years; mean 13.0 years). MRI 
was performed at 3 T. DTI used 33 gradient directions with 0.83x0.83x2.2 mm3 
resolution, and a maximum b value of 800 s/mm2. Anatomical images were 
obtained using 3D MP-RAGE with 1x1x1 mm3 resolution. For BOLD rs-fMRI, we 
used gradient-echo EPI with 2.63x2.63x4 mm3 resolution. The rs-fMRI data were 
slice-time-corrected, realigned to the first image using rigid body registration to 
adjust for head motion, and then co-registered to the b0 image using SPM8 rigid 
body transformation. DTI images were normalized to the JHU-DTI-MNI “Eve” 
template [3] via a 9-parameter affine transformation using AIR, followed by large 
deformation diffeomorphic metric mapping (LDDMM) [4, 5]. Inverse transformation 
of the brain parcellation map led to segmentation of the brain into 159 anatomical 
structures (Figure 1) [3]. Peripheral white matter and gray matter were separated 
using Statistical Parametric Mapping (SPM) segmentation of MP-RAGE images. 
For each subject, we thus obtained DTI outcome measures (fractional anisotropy 
(FA), mean diffusivity (MD), and volume) for 185 parcels, and a matrix of 185 
parcels by 210 time points for rs-fMRI. All measurements were adjusted by age by 
using batch effect correction. DTI parameters for peripheral 
gray matter were discarded, and population-based Z-scores 
were calculated for the remaining 131 parcels. Principal 
component analysis (PCA) was applied to the Z scores, to 
extract components that described the characterization of 
CP and control children. For rs-fMRI, after nuisance removal 
and filtering [6], inter-parcel correlation coefficients were calculated for the CP 
and control children by using 46 cotrical parcellations; PCA was then applied 
to the matrix of correlation coefficients.   
 

Results: Figure 2 shows the distribution of CP and control children in three 
principal components extracted from volume and DTI-derived measures. 
Figure 3 shows the average inter-parcel correlation coefficients obtained from 
rs-fMRI in CP and controls.  
 

Discussion: Deep white matter, ventricles, and thalamus were the main 
structures in which changes in MRI/DTI data were seen in the CP group. PCA 
using DTI-derived Z scores showed segregation between the CP group and 
the control group. Regarding the rs-fMRI data, absolute correlation 
coefficients tended to be smaller in CP children compared with controls, 
although inter-parcel patterns were similar. PCA using these inter-parcel 
correlation coefficients showed more concentrated distributions in controls, and 
more scattered distributions in CP children, consistent with the anatomical 
variability seen in CP, which cannot be identified by the qualitative analysis. 
 

Conclusion: Atlas-based analysis of multi-modal imaging data, followed by 
principal component analysis, provides a quantitative means of summarizing 
inter-group differences, and may lead to approaches to correlate imaging 
outcomes with individual functional assessments in CP and to measure 
outcomes of interventions that may affect brain reorganization.  
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