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Target Audience: Researchers and clinicians who are interested in molecular and cellular MRI, especially in the non-invasive monitoring of gene 
expression, gene therapy, and drug delivery and screening with advanced MRI-based methodologies. 

Purpose: The overall goal is to bioengineer a new MRI reporter system that allows real-time monitoring of gene expression using CEST-MRI 
and which encompasses optical capabilities. The specific goals of this study were to overcome the challenges of quantifying the accumulation 
and sub-cellular distribution of the reporter probe, and minimize contributions from endogenous CEST contrast or direct water saturation. 

Methods: Pyrrolo-2’-deoxycytidine (pyrrolo-dC) was dissolved in 10mM PBS at a 20mM concentration. CEST-MRI experiments were performed 
on an 11.7T Bruker Avance system, as previously described1. A modified RARE (TR/TE=6000/9.4ms), including a magnetization transfer module 
(B1 = 4.7 μT/4000 ms), was used to acquire CEST-weighted images. The absolute water resonant frequency shift was measured using a modified 
WASSR method, with the same parameters as in CEST imaging, except for a TR=1.5 sec and a saturation pulse of B1 =0.5 μT/250 ms. Mean CEST 
spectra were derived from an ROI for each sample, after B0 correction for each voxel using Matlab. MTR asymmetry (MTRasym)= 100×(S-Δω – S+Δω)/ 
S0 was computed at different offsets, Δω. 9L rat glioma, engineered to express Drosophila melanogaster 2’-deoxynucleoside kinase (Dm-dNK; 
9LDm-dNK) and  control, non-expressing wild type cells (9Lwt), 5×106 cells per group, were incubated for 4 hours in cell-culture medium containing 
2mM pyrrolo-dC. Then, the cells were washed with PBS, lysed, and 
fluorescence was measured in triplicate using a plate reader 
(λex355nm/λem460nm).  Pyrrolo-dC-loaded liposomes were prepared 
using a standard lipid hydration method, followed by extrusion. 

Results: Fig. 1a shows a schematic illustration of the phosphorylation 
of pyrrolo-dC to pyrrolo-dC monophosphate by the enzyme Dm-dNK in 
the presence of ATP. Fig. 1b shows the CEST spectrum and MTRasym 
plot of pyrrolo-dC (red) compared to that of PBS (gray). The NH proton 
of the pyrrolo-dC generates a well-defined peak at the 5.8ppm 
frequency offset from water. The MTRasym maps obtained at 
Δω=5.8ppm (Fig. 1c) demonstrate the high CEST contrast generated by 
pyrrolo-dC. We capitalized on the optical properties to measure the 
accumulation of phosphorylated pyrrolo-dC in Dm-dNK-expressing 
cells. The Dm-dNK gene was cloned into the pcDNA expression vector 
and was transfected into 9L rat glioma cells (9LDm-dNK). Next, both 
9LDm-dNK and wild type (9Lwt) cells were incubated in a medium 
containing 2mM pyrrolo-dC for 4 hours. As clearly shown in Fig. 1d, 
only the lysate of incubated 9LDm-dNK cells provides a high fluorescence 
level, while fluorescence was undetectable for incubated 9Lwt.  
As shown in Fig. 2a, liposomes loaded with pyrrolo-dC showed higher fluorescence levels compared to empty liposomes. The pyrrolo-dC-containing 
liposomes generated higher CEST contrast at 5.8ppm, compared to the empty-control liposomes (Fig. 2b). 

Discussion: Recent advances in molecular MR imaging have revolutionized our ability to monitor gene 
expression with reporter genes2-6. For CEST-based reporter systems, the observed sharp and well-defined 
NH peak at the 5.8 ppm frequency offset from water is a major advantage, since a large Δω (>3.6ppm) 
minimizes contributions from endogenous CEST contrast and direct water saturation.  
The formation of the pyrrolo-dC monophosphate in the presence of recombinant Dm-dNK (Fig. 1a) 
resulted in accumulation of the fluorophore in the cytoplasm, as its negative charge prevented cellular 
export. The use of a fluorescent-based CEST-probe, such as pyrrolo-dC, enables its accumulation to be 
detected only in cells expressing Dm-dNK, which implies that in vivo monitoring of Dm-dNK reporter 
gene expression with CEST-MRI is feasible. Liposomes may be considered as a delivery vehicle to 
increase pyrrolo-dC circulation time, control its release, and prevent degradation in the circulation.  

Conclusion: Synthetic fluorescent nucleosides, such as pyrrolo-dC, can be used for the real-time 
monitoring of gene expression and tracking liposomal delivery with both optical and MRI modalities. 
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Fig 1. a) Illustration of pyrrolo-dC phosphorylation by Dm-dNK. b) CEST 
spectra (solid lines) and MTRasym plots (dashed lines) for pyrrolo-dC (red) and 
PBS (gray). c) MTRasym maps of pyrrolo-dC and PBS at Δω=5.8ppm. d) 
Fluorescence as measured from the cell (9Lwt and 9LDm-dNK) lysate after 
incubation with pyrrolo-dC.  

 
Fig 2. Liposome bearing pyrrolo-dC 
(Lipo-pyrrolo-dC) compared to empty 
liposome (Lipo-PBS). a) Fluorescence 
and b) CEST-MRI. 
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