Imaging Ca²⁺ using Fluorine Chemical Exchange Saturation Transfer (¹⁹F-CEST) Amnon Bar-Shir^{1,2}, Assaf A. Gilad^{1,2}, Kannie W.Y. Chan^{1,3}, Guanshu Liu^{1,3}, Peter C.M. van Zijl^{1,3}, Michael T. McMahon^{1,3}, and Jeff W.M. Bulte^{1,2} ¹Department of Radiology, Johns Hopkins University, Baltimore, MD, United States, ²Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States, ³F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States

Target Audience: Researchers and clinicians who are interested in molecular and cellular imaging, those developing new methods for CEST-MRI, and those developing new contrast agents for $^{19}\mathrm{F}\,\mathrm{MRI}.$

Purpose: To develop a chemical exchange saturation transfer (CEST) approach for specific imaging of free *endogenous* metal ions using the binding kinetics of these ions through the chemical exchange with fluorinated substrates, i.e. ¹⁹F-CEST.

Methods: ¹⁹F-CEST experiments were performed on solutions containing 1,2-Bis-[2-bis(carboxymethyl)amino-5-fluorophenoxy]ethane (5FBAPTA), with and without divalent cations (M²⁺). Spectroscopy: Experiments were performed on an 11.7T NMR spectrometer (Bruker). 5FBAPTA (AnaSpec, Inc.) was dissolved in 40 mM HEPES buffer (pH=7.0) to a concentration of 5 mM, and CaCl₂ was dissolved to a final Ca²⁺ concentration of 50 μ M. ¹⁹F-CEST spectra (z-spectra) were acquired with a saturation transfer sequence consisting of a saturation pulse (B₁=4.7 μ T, 4 sec) with variable offset (from -7.5 to +7.5 ppm relative to the 5FBAPTA frequency set at 0 ppm). Experiments were performed without (room temperature, RT) and with sample heating (37°C). The MTR_{asym} = $100 \times (S_{\Delta\omega} - S_{+\Delta\omega})/S_0$ was computed at different offsets $\Delta\omega$, where S₀ is the 5FBAPTA signal without saturation. *MRI*: Imaging experiments were performed on a 16.4T MRI scanner (Bruker). 5FBAPTA was dissolved to 10 mM in 40mM HEPES, pH=7.0, with or without 100 μ M of M²⁺ (Mg²⁺, Zn²⁺, or Ca²⁺). ¹⁹F-CEST images were acquired using a continuous wave presaturation pulse (B1=3.6 µT, 3sec) followed by a multi-echo MRI pulse sequence (RARE, rare factor 4, TR/TE=6000/10 ms). FOV of 4×4 cm, matrix 32×32 and slice thickness 10mm. Mean ¹⁹F-CEST spectra were derived after B₀ correction for each voxel using MatLab. MTR_{asym} plots and maps were calculated as described above.

<u>**Results:**</u> Fig. 1a illustrates the chemical shift offsets ($\Delta \omega$) of the 5FBAPTA at the ¹⁹F NMR frequencies upon complexation with various divalent cations $(M^{2+})^{\hat{I}}$. Fig. 1b depicts the dynamic exchange process between the free 5FBAPTA and Ca²⁺-bound 5FBAPTA, i.e., [Ca-5FBAPTA], allowing indirect detection of low Ca²⁺ concentrations by using saturation transfer (Fig. 1c). Fig. 1c shows the ¹⁹F-CEST-spectra and MTR_{asym} plots of 5 mM 5FBAPTA in the presence of 50 μ M Ca²⁺ in HEPES buffer (pH=7.0). The dynamic ion exchange process between 5FBAPTA and [Ca-5FBAPTA], which increases with temperature, results in an observed increase in the MTR_{asym} value at $\Delta\omega$ =5.8 ppm ($\Delta\omega$ of [Ca-5FBAPTA]) resulting in a change in the 5FBAPTA signal.

Fig 1. a) Schematic illustration of the chemical shift offsets ($\Delta\omega$) at the ¹⁹F NMR spectrum of 5FBAPTA upon chelation with different bivalent cations. b) Demonstration of the dynamic exchange process between free and Ca²⁺-bound 5FBAPTA. c) ¹⁹F-CEST spectra (solid lines) and MTR_{asym} plots (dashed lines) for the complex [Ca²⁺-5FBAPTA] at room temperature (RT, blue) and 37°C (red) obtained at 11.7T.

The ¹⁹F-CEST MR images shown in Fig. 2 clearly demonstrate the specificity of our approach. On conventional ¹⁹F

MRI (Fig. 2a) no difference in contrast could be observed for the different tubes (no M^{2+} , Mg^{2+}) Zn^{2+} , and Ca^{2+}) as this detects only the free 5FBAPTA. On ¹⁹F-CEST MRI however, only the Ca^{2+} containing solution generated contrast (Fig. 2b). Here, the saturation pulse was applied at $\Delta\omega$ =5.8 ppm from the 5FBAPTA resonance (0 ppm). Fig. 2c shows the mean 19 F-CEST MTR_{asym} plot for the tube containing 5FBAPTA in the presence of Ca^{2+} .

Discussion: The variance in the $\Delta \omega$ of [M²⁺-5FBAPTA] complex for each examined M²⁺ makes ¹⁹F-CEST MRI more specific than relaxation based ¹H MRI methodologies. Its specificity is probably comparable to that of PARACEST agents used for Ca⁺² and Zn⁺² binding^{2, 3}, but no paramagnetic agent is needed. The higher saturation transfer effect for 5FBAPTA obtained at 37°C as compared to RT (Fig. 1c) is due to the faster ion exchange rate between 5FBAPTA and [Ca-5FBAPTA]. This confirms that the observed effect is due to the dynamic binding kinetics process, with our approach following the principles of ¹H-CEST MRI and this exchange mechanism can be classified as "molecular exchange"⁴. The specificity of the ¹⁹F-CEST method proposed here is not just due to the different $\Delta \omega$ values of the examined ions (Fig. 1a), but also due to the different dissociation constants (K_d) between 5FBAPTA and the divalent metal complex [M²⁺-5FBAPTA], which determines the exchange rate (k_{ex}) and therefore the ¹⁹F-CEST contrast. The K_d for Ca²⁴ results in slow to intermediate k_{ex} on the NMR time scale⁵, while the K_d values for Mg²⁺⁺ and Zn²⁺⁺ result in k_{ex} values that are too fast and too slow, respectively^{*l*}, preventing the observation of signal changes in the ¹⁹F-CEST experiment.

Conclusion: We have developed a new approach for Ca²⁺ monitoring using MRI, in which the conventional amplification strategy and exchange sensitivity of CEST are combined with the $\Delta \omega$ specificity of the ¹⁹F frequency in free and bound substrate to obtain MR images of calcium binding kinitics. Supported by MSCRFII-0161-00, R01EB015032 and MSCRFF-0103-00.

Fig 2. a) ¹⁹F MRI of tubes containing 10 mM of 5FBAPTA obtained at 16.4T. Tubes contained either no M2+ content or one of the ions Mg^{2+} , Zn^{2+} or Ca^{2+} at 100 μM concentration. **b**) MTR_{asym} maps ($\Delta\omega$ =5.8 ppm) obtained from the ¹⁹F-CEST experiment of the tubes shown in a. c) MTR_{asym} plots (dashed lines) of the Ca² containing tube.

References: 1. G. A. Smith et al., Proc Natl Acad Sci U S A 80, 7178 (1983). 2. G. Angelovski et al., Bioorg Med Chem 19, 1097 (2011). 3. R. Trokowski et al., Angew Chem Int Ed Engl 44, 6920 (2005). 4. P. C. van Zijl, N. N. Yadav, Magn Reson Med 65, 927 (2011). 5. H. Gilboa et al., NMR Biomed 7, 330 (1994)