Phase sensitive PC-bSSFP: simultaneous quantification of T_1 , T_2 and spin density M_0

Martin Ott¹, Martin Blaimer¹, Philipp Ehses², Peter Michael Jakob¹, ³, Felix Breuer¹

¹Magnetic Resonance Bayaria e.V, Würzburg, Bayern, Germany; ²Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Tübingen, Germany; ³Department of Experimental Physics V, University of Würzburg, Würzburg, Bayern, Germany

Introduction: The fast and simultaneous quantification of MR parameters with a single sequence (IR-bSSFP [1]) has been proposed several years ago. The method is not suitable for 3D imaging due to long magnetization recovery interruptions. The used bSSFP-sequence is highly sensitive to off-resonance effects resulting in banding-artifacts and leading to over and underestimation of the parameters. Especially at higher fields, off-resonances cannot be avoided anymore. Here we propose a new approach for simultaneous quantification of M_0 , T_1 and T_2 based on phase-cycled bSSFP in 3D. The new proposed method yields its dynamics from the signals phase and offers intrinsic off-resonance compensation. This work presents the new theory and shows an experimental validation.

Methods: Experimental data-signal p from a phase-cycled bSSFPsequence can pixel-wise fitted into a common ellipse equation:

 $p = x_0 + iy_0 + (x \cdot \sin(\Phi) + iy \cdot \cos(\Phi)) \cdot e^{i\gamma}$. Five data-points are required to determine an unambiguous fit. The common complex bSSFP steadystate equation can be recast into[3]:

to off-resonance free signals of measurements with $\Theta = \{0^{\circ}, 180^{\circ}\}\$ for every pixel.

opposite to the upper one at flip-angle α_2 whos Cross-Solution is used to determine the slope m_{XS} . The

Im

 $\Delta \Theta = 0^{\circ}$

 $\Delta\Theta = 270$

 $\Delta\Theta = 0^{\circ}$

 m_{xs}

 M_{xs}, α

Fig. 1: Two complex ellipses are shown. The lower one at

Re

 $\Delta\Theta = 270^{\circ}$

 $\Delta\Theta = 90^{\circ}$

 $\Delta\Theta = 180^{\circ}$

α,

 M_{XS}, α_2

 $\Delta\Theta = 180^{\circ}$

flip-angle α_1 is fully sampled by 16 phase-cycles in

lower ellipse allows to determine the ratio ξ . $S_{bSSFP,\Theta} = M_{\text{XS}} \frac{1 - E_2 \cdot e^{i\Theta}}{1 - b \cdot \cos \Theta}$ with $\Theta = \Delta\Theta + \Delta\omega \cdot \text{TR}$, $b = b(T_1, T_2, \text{TR}, \alpha)$, $M_{\text{XS}} = M_{\text{XS}}(M_0, T_1, T_2, \text{TR}, \alpha)$, $\Delta\Theta$ as used phase-cycle. The shape of the function is similar to an ellipse equation and is a function of M_0 , T_1 , T_2 , flip-angle α and TR. The ellipse shape allows to interpolate to any arbitrary off-resonance $\Delta\omega$ and hence

The ratio $\xi = \xi(\alpha_1, T_1, T_2, TR) = S_{\text{bSSFP},\Theta=180^{\circ}}/S_{\text{bSSFP},\Theta=0^{\circ}}$ can be used as the first fit variable. The second fit variable is the slope $m_{\rm XS} = m_{\rm XS}(\alpha, T_1, T_2, {\rm TR})$ of demodulated magnetization [2, 3] $M_{\rm XS}$ between two flip-angles analogous to [2, 5]. The demodulated magnetization can be calculated from four data-points with perpendicular phase-cycles applying the Cross-Solution(XS)[3]. Both variables ξ and $m_{\rm XS}$ only depend on T_1 , T_2 as well as the parameters TR and α_1 . Therefore the parameters can be obtained by numerical fits. Spin density M_0 can be calculated from the demodulated magnetization $M_{\rm XS}$ as well as $\Delta\omega$ from signal equation. Experiments: In-vivo measurements were performed on a healthy volunteer using a 1.5T clinical scanner. A bSSFP-sequence with non-selective super-balanced RF-pulses[4] was used. Two flip-angles of 33° and 50° were used as well as a TR-time of 8ms. 8 different phase-cycles were measured to overdetermine the ellipse. 4 more images were acquired for the second flip-angle. Total

imaging time for a 192x192x44 matrix was approximately 14min. An exemplary raw data image is shown on the figure below. Results: The data was analyzed using custom made MATLAB functions. The center slice was used for analysis. Other slices lead to similar results. As proposed the obtained M_0 -, T_1 - and T_2 -maps do not suffer from banding-artifacts, see in the figure below. The obtained T_1 - and T_2 -times show good agreement for lower values.

(a) raw data image with severe (b) M_0 -map(arb. units) of a human (c) T_1 -map(ms) of a human head banding-artifacts

(d) T_2 -map(ms) of a human head

Conclusion: In this work we have shown that phase sensitive PC-bSSFP measurements can be used to obtain T_1 , T_2 , $\Delta\omega$ and M_0 . The method is a 3D and suitable for higher field strength. In contrast to DESPOT2[5], all measurements can be done simultaneous with one imaging sequence, no T_1 -information is required a prior. A thorough analysis about accuracy and robustness as well as optimal flip-angles is subject of current research. Parallel imaging methods may be applied for speed up.

References: [1] Schmitt et al., 2004 MRM, 51:661–667 [2] M.Ott el al., 2011 ESMRMB [3] Q-S. Xiang and M.N. Hoff 2010 ISMRM [4] O. Bieri, 2011 MRM, in press [5] S. Deoni et al, 2003, MRM 49, 515-526

Acknowledgment: The authors thank SIEMENS, Healthcare Sector, Erlangen, Germany for technical support and Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology (BayStMWIVT) for financial support.