

COMPARISON OF THREE MRI MOLECULAR IMAGING MODALITIES: APPLICATION TO ANGIOGENESIS IMAGING IN A BRAIN TUMOR MOUSE MODEL

Céline Giraudeau¹, Benjamin Marty¹, Julien Flament¹, Françoise Geffroy¹, Christelle Médina², Philippe Robert², Caroline Robic², Marc Port², Denis Le Bihan¹, Julien Valette¹, Sébastien Mériaux¹, Fawzi Boumezbeur¹, and Franck Lethimonnier¹

¹NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Gif-sur-Yvette, France, ²Guerbet, Research Division, Roissy-Charles de Gaulle, France

Introduction

The recent development of targeted contrast agents (CA) has opened the way for MRI molecular imaging. Here we evaluated three different CA based on different principles: Gd-based emulsion (paramagnetic agent), lipoCEST [1] (shifting agent) and fluorine emulsion (¹⁹F MRI). A comparison of the three modalities sensitivity and specificity was performed on a mouse model of brain tumor using CA grafted with RGD peptides to specifically target $\alpha_v\beta_3$ integrins over-expressed in angiogenic vessels.

Materials and Methods

Animal model. Brain tumors ($\varnothing \sim 2$ to 6mm) were induced in nude mice by IC injection of U87MG cells. Animals were sorted to remove experiments with low SNR and animals with untypical behavior.

CA. For each modality, 2 CA were used (RGD and Ctrl): 2 Gd-based emulsions ($r_1=2.4 \cdot 10^5 \text{ mM}^{-1} \text{ s}^{-1}$), 2 lipoCEST exhibiting maximum MTRasym (asymmetric Magnetization Transfer Ratio) contrasts for $B_{1\text{opt}}=7 \mu\text{T}$ and $\delta_{\text{opt}}=\pm 8 \text{ ppm}$, and 2 ¹⁹F emulsions (PFOB, 40% w/w).

MRI. Acquisitions were carried out with a 7T Bruker rodent scanner, before and within the 2h following IV injection of each CA.

Gd: A T_1 mapping IR-FGE sequence [2] ($R=150 \times 150 \times 660 \mu\text{m}^3$, $T_{\text{acq}}=12.5 \text{ min}$) was acquired on 10 mice (5 RGD and 5 Ctrl). Concentration maps were derived using the CA relaxivity r_1 .

CEST: A Multi-Slice Multi-Echo (MSME) sequence ($R=150 \times 150 \times 660 \mu\text{m}^3$, $T_{\text{acq}}=14 \text{ min}$) preceded by a saturation was acquired on 24 mice (12 RGD and 12 Ctrl).

¹⁹F: A MSME sequence optimized for the CF_3 peak of PFOB [3] ($R=500 \times 500 \times 6000 \mu\text{m}^3$, $T_{\text{acq}}=18 \text{ min}$) was acquired on 12 mice (6 RGD and 6 Ctrl).

Results and Discussion

As illustrated by Figure 1, CA are detected with a sub-nanomolar sensitivity by the three modalities. Moreover a higher contrast is systematically observed for RGD contrast agents inside the tumor. This difference can be ascribed to a specific association of RGD peptides to $\alpha_v\beta_3$ integrins expressed at the neo-vessels surface. As summarized in Table 1, time courses (RGD vs Ctrl) are significantly different ($p < 0.05$) from the first time point for Gd-based and ¹⁹F emulsions but only after 1h with the lipoCEST. For each RGD-CA a plateau is rapidly reached at concentrations specified in Table 1. A contrast decrease is only observed for the Ctrl lipoCEST, probably due to a shorter half life of flowing liposomes ($\sim 1h30$) compared to emulsions ($\sim 4h$). The lowest concentrations are obtained with ¹⁹F emulsions due to partial volume effect. Advantages and limitations of each approach are summarized in Table 1. Gd-based approach seems to offer the best compromise to ensure a high spatial resolution and sensitivity of detection, highlighting significant differences with functionalized CA, even on a small number of animals. However, quantification method is based on *in vitro* measurement of the CA relaxivity r_1 . CEST approach also leads to a high spatial resolution and is quite insensitive to flowing CA. Nevertheless, this method is sensitive to B_0 and B_1 inhomogeneities and quantification is hampered by endogenous MT contrast. Finally, ¹⁹F approach allows direct quantification thanks to both lack of endogenous fluorine and linearity between MRI signal and CA concentration, but suffers from a lower spatial resolution compared to ¹H modalities.

	Gd	lipoCEST	¹⁹ F
Spatial resolution	$150 \times 150 \times 660 \mu\text{m}^3$	$150 \times 150 \times 660 \mu\text{m}^3$	$500 \times 500 \times 6000 \mu\text{m}^3$
1 st significant time point	12.5min	60min	18min
Concentration at the plateau	0.4nM	1.6nM	80pM
Advantages	Spatial resolution Specificity Quantification	Spatial resolution Quite insensitive to movements	Quantification
Limitations	Access to <i>in vivo</i> r_1 relaxivity	Endogenous MT B_0 et B_1 inhomogeneities	Spatial resolution

Table 1. Main characteristics of Gd, CEST and ¹⁹F modalities

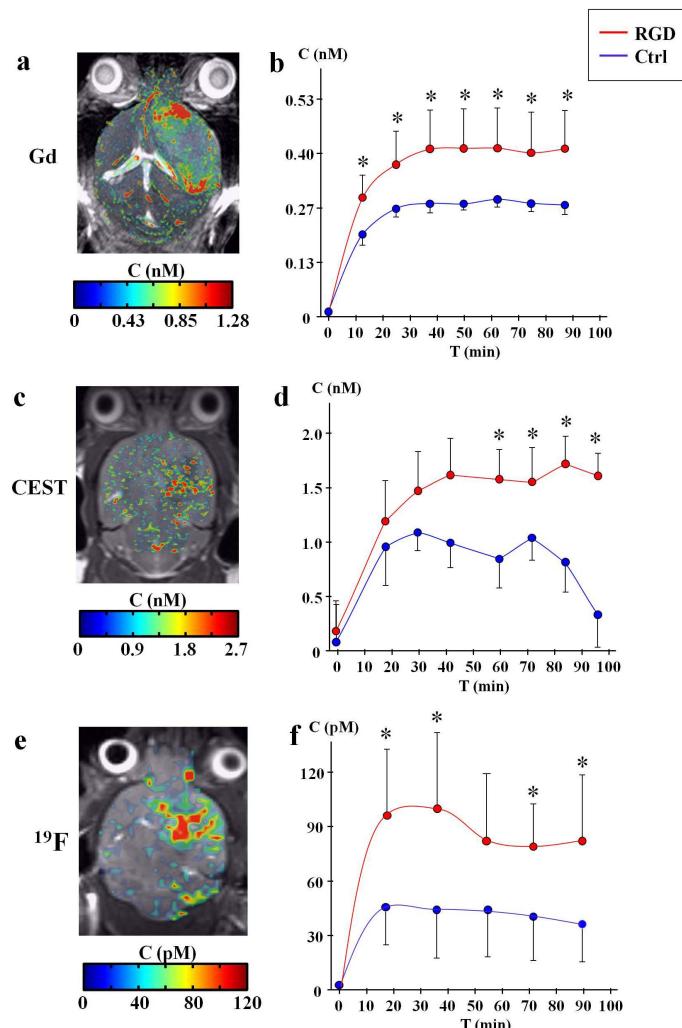


Figure 1. Example of images acquired after IV injection of RGD CA for Gd, CEST and ¹⁹F modalities (a, c, e respectively). Time course obtained after IV injection of RGD and Ctrl CA (red and blue curve respectively) for Gd, CEST and ¹⁹F modalities (b, d, f respectively). Signal is averaged in the tumor region and through the animal cohort ($n=5/5$ for Gd, $n=12/12$ for CEST and $n=6/6$ for ¹⁹F).

Conclusion

To our knowledge, this study is the first comparison of functionalized CA used in similar experimental conditions. As shown by their application on a brain tumor mouse model, each modality provides additional information, promising for multimodal investigation of brain diseases.

[1] Aime et al. Angew Chem 2005

[2] Deichman et al. MRM 1999

[3] Giraudeau et al. MRM 2010